• Title/Summary/Keyword: magnetic separation

Search Result 407, Processing Time 0.029 seconds

An integrated DNA barcode assay microdevice for rapid, highly sensitive and multiplex pathogen detection at the single-cell level

  • Jung, Jae Hwan;Cho, Min Kyung;Chung, So Yi;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.276-276
    • /
    • 2013
  • Here we report an integrated microdevice consisting of an efficient passive mixer, a magnetic separation chamber, and a capillary electrophoretic microchannel in which DNA barcode assay, target pathogen separation, and barcode DNA capillary electrophoretic analysis were performed sequentially within 30 min for multiplex pathogen detection at the single-cell level. The intestine-shaped serpentine 3D micromixer provides a high mixing rate to generate magnetic particle-pathogenic bacteria-DNA barcode labelled AuNP complexes quantitatively. After magnetic separation and purification of those complexes, the barcode DNA strands were released and analyzed by the microfluidic capillary electrophoresis within 5 min. The size of the barcode DNA strand was controlled depending on the target bacteria (Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella typhimurium), and the different elution time of the barcode DNA peak in the electropherogram allows us to recognize the target pathogen with ease in the monoplex as well as in the multiplex analysis. In addition, the quantity of the DNA barcode strand (~104) per AuNP is enough to be observed in the laser-induced confocal fluorescence detector, thereby making single-cell analysis possible. This novel integrated microdevice enables us to perform rapid, sensitive, and multiplex pathogen detection with sample-in-answer-out capability to be applied for biosafety testing, environmental screening, and clinical trials.

  • PDF

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

Analysis and Separation of Constituent Materials of Old Car by Shredding Process (폐자동차 파쇄를 통한 주요구성물질의 분리 및 분석평가)

  • Lee Hwa-Young;Oh Jong-Kee;Kim Sung-Gyu
    • Resources Recycling
    • /
    • v.11 no.4
    • /
    • pp.11-16
    • /
    • 2002
  • Analysis and separation of constituent materials of old car have been performed by using the industrial shredding line. For this aim, three old cars made by domestic automobile manufacturers, Sonata II, Sephia and Prince were chosen and delivered in pressed form without engine, tires and doors, etc. Shredding line was substantially composed of pre- and main-shredder. cyclone, magnetic separation, eddy current separation and man-power separation. From the separation of shredder products, iron scrap was observed to be the major material of old car accounting for 60.1 % of total weight and non-ferrous metals involving Al, Cu and Zn, etc. were about 2%. Light fluff, about 90% of total fluff product, was comprised with plastic, fiber and sponge, etc. and the fraction of 5 cm undersize in light fluff was 70.5%. In case of heavy fluff, however. rubber and plastic were found to be the major constituent materials of it. Among the constituent materials of fluff, plastic showed the highest calorific value, more than 10,000 cal/gr and leather and rubber showed relatively high chlorine content, 10.3 and 2.55 wt%, respectively.

Application of Superconducting Magnetic Separation for Condenser Water Treatment in Thermal Power Plant

  • Lee, You-Jin;Kwon, Jun-Mo;Baik, Seung-Kyu;Han, Kwang-Soo;Ko, Rock-Kil;Sohn, Myung-Hwan;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.2
    • /
    • pp.21-24
    • /
    • 2011
  • Superconducting high gradient magnetic separation (HGMS) has advantages to treat wastewater because it can generate high magnetic field and achieve rapid purification. In this study superconducting HGMS was applied to remove impurities from the condenser water in thermal power plant. The condenser water contained mainly hematite and maghemite and it was highly magnetized than hematite. In the HGMS tests using a 6-T cryo-cooled Nb-Ti superconducting magnet, the turbidity of the condenser water was effectively reduced up to 99.6% and the result showed better performance than that of the 0.5-T permanent magnet test. The higher magnetic field was applied in the range of 1-6T, the more iron oxides were removed. The effect of magnetic filter configuration on the condenser water treatment was also investigated. Consequently superconducting HGMS system can be applicable to remove iron oxide impurities from condenser water in thermal power plant.

Study on Analysis Method for Ship's Ferromagnetic Signature using Magnetic Mock-up Model (축소 모델을 이용한 함정 자기장 신호 해석 기법 연구)

  • Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.38-51
    • /
    • 2007
  • This paper describes research results for the measurement and analysis method of magnetic signatures generated from the ship's magnetic mock-up model. In this paper, we present the theoretical and experimental techniques for the separation of the permanent and the induced magnetic field from the measured magnetic signature of the mock-up model. Also, we describe the prediction method of the induced magnetic field generated from mock-up model using the Magnet s/w, one of the FEM analysis tools for the electro-magnetic field and the magnetic dipole modelling method based on the least square techniques. The proposed modelling and analysis methods can be used for the prediction and the analysis of the static magnetic field generated from the real naval ship as well as the mock-up model.

Innovative Technology for Removal of Dispersants used in Oil Spill Remediation Using the Magnetic Separation (자성 분리를 이용한 해상 유류오염제어에 사용되는 유화제를 제거하는 새로운 기술에 대한 연구)

  • Chun, Chan-Lan;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.679-688
    • /
    • 2000
  • Dispersants, which are used to break water-in-oil emulsions and to remediate oil-spills, are another water pollutants. In this study, magnetic separation technology was applied to remove dispersants from the sea. Magnetite and maghemite were used as magnetic sorbents and SDDBS, an anionic surfactant and Triton X-100, a nonionic surfactant, were employed as dispersants. Batch experiments were undertaken to study the sorption capacity and sorption equilibrium, and water-bath experiments were conducted to simulate the real situation and to describe the recovery of magnetic particles by the permanent magnet or electromagnet. Maghemite has rather constant removal efficiency for dispersants, regardless of surfactant species. On the other hand, removal efficiency by magnetite is higher for anionic surfactant than maghemite and is higher in distilled water than in seawater which contains more ions. The sorption of dispersants to magnetite is explained by electrostatic attraction and that of maghemite is described not only by electrostatic attraction, but also by structural characteristics that provide high sorption ability and surface condition. Water bath experimental results showed that recovery efficiency of magnetic particle after sorption for dispersants is nearly 100%. It is suggested that this magnetic separation technology is an effective way of dispersant removal because of short operating time, high sorption capacity, and high recovery efficiency of sorbents.

  • PDF

Facile Approach to Magnetic Carbon Nanoparticles using an Iron-Doped Polymer Precursor

  • Yoon, Hyeon-Seok;Jang, Jyong-Sik
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.283-283
    • /
    • 2006
  • Multigram-scale product exclusively containing magnetic carbon nanoparticles (MNCPs) with uniform size was successfully fabricated without a specific separation process. The iron-doped PPy nanoparticles were synthesized by micelle templating and used as the carbon precursor in order to generate MCNPs. The magnetic carbon nanoparticles possessed a microporous structure and exhibited ferromagnetic properties at room temperature. This approach may be an effective alternative to generate magnetic carbon nanoparticles against the conventional arc-discharge technique.

  • PDF

Past and ongoing researches for magnetic force control technology

  • Mori, T.;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • The technologies using magnetic force control have been investigated toward application in various fields. Some of them have been put into practical use as the results of technological development. This paper introduces our technical development in the field of water processing, scale removal, magnetic drug delivery system, decontamination of radioactive substances and resources recycling.

Polyamine Group Assembled Silica Coated Ferrite Nanoparticle for Lambda DNA Detection

  • Park, Moo-Eon;Chang, Jeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1193-1194
    • /
    • 2006
  • The magnetic ferrite nanoparticles were synthesized and coated by silica precursor in controlling the coating thicknesses and sizeses. The surface modification was performed with amino-functionalized organic silanes on silica coated magnetic nanoparticles. The use of functionalized self-assembled magnetic ferrite nanoparticles for nucleic acid separation process give a lot of advantages rather than the conventional silica based process.

  • PDF

The Mineralogical and Chemical Characteristics of Fe Impurities and the Efficiency of their Removal Using Microwave Heating and Magnetic Separation in the Pyrophyllite Ore (엽납석광석에 존재하는 Fe 불순물의 광물학적/화학적 특성과 마이크로웨이브 가열 및 자력분리에 의한 제거효과)

  • Cho, Kang-Hee;Kim, Bong-Ju;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.47-58
    • /
    • 2016
  • The Fe-component of pyrophyllite is an impurity that reduces its grade in the final product. In order to identify the amount of impurity in pyrophyllite and to remove the Fe from the ore using a dry method, microwave heating and magnetic separation were carried out. Pyrite and hematite were identified to contain pyrophyllite by microscopy, XRD, XRF, SEM/EDS and EPMA analysis. It is suggested that the euhedral pyrite in the pyrophyllite is formed by hydrothermal solution, and then the dissolution cavity structure is formed with a partial remainder of the pyrite which dissolved in acidic water. And the $Fe^{3+}$ ion contained in the acidic water precipitated out in the concentric structure of hematite as the origin of sedimentary structure. As a result of the microwave heating and magnetic separation experiments, the Fe removal rates obtained were 96% and 93% from pyrophyllite ore from the Sunsan mine and Wando mine, respectively. It is confirmed that the microwave heating and magnetic separation method was an environmentally friendly method to upgrade the low-grade pyrophyllite.