• Title/Summary/Keyword: magnetic sensors

Search Result 563, Processing Time 0.022 seconds

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

Magnet Position Sensor System using Hall Sensors (홀센서를 이용한 자석의 위치인식 센서 개발)

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.2
    • /
    • pp.166-172
    • /
    • 2011
  • This paper presents a sensor system which recognizes the location of a magnet using cheap hall sensor. The proposed methods measure magnetic field from a magnet using model equation, analyze the property of horizontal and vertical magnetic field, and decide the method of sensor arrangement. And, this paper proposes the algorithm which infers the location of a magnet from the measured magnetic field that relates the position between the magnet and the hall sensor, and calculate theoretical error, which is found to be no more than 0.0025cm. The results actually measured show that the measured error no more than 0.07cm and confirm that proposed systems are highly applicable to the various situations.

Research on Impact Sensors for Developing the Electronic Body Protector of Taekwondo (태권도 전자호구 개발을 위한 충격감지 센서 연구)

  • Ki, Jae-Sug;Jeong, Dong-Hwa;Lee, Hyun-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.648-655
    • /
    • 2019
  • This paper proposes the differential development of a Taekwondo electronic body protector. For this development, the most suitable sensor system was selected after analyzing and testing various sensor methods (magnetic sensors, electric capacity sensors, contact switch sensors, and piezo-film sensors) that could be applied in the electronic body protector, the selected sensors were distributed to the body and feet to make a more precise hit score, unlike the existing system in which all sensors are centralized on the body. Furthermore, it aims to illuminate using a lightweight film-type piezoelectric sensor on the body protector. In the case of an existing electronic body protector, all sensors and network device were concentrated on the body protector, so users need to purchase a set if they want it. On the other hand, the proposed system cloud can be used individually using a smart scoring WEP program. The effects of decreasing weight by up to 20% were compared with those of the existing system. Setting up a test facility is very difficult, so more study will be needed to analyze the effects of a hit.

A New LC Resonator Fabricated by MEMS Technique and its Application to Magnetic Sensor Device (MEMS 공정에 의한 LC-공진기형 자기센서의 제작과 응용)

  • Kim, Bong-Soo;Kim, Yong-Seok;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • A new class of LC-resonator for micro magnetic sensor device was invented and fabricated by means of MEMS technique. The micro LC-resonator consists of a solenoidal micro-inductor with a bundle of soft magnetic microwire cores and a capacitor connected in parallel to the micro-inductor. The core magnetic material is a tiny glass coated $Co_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire fabricated by a glasscoated melt spinning technique. The core materials were annealed at various temperatures $150^{\circ}C,\;200^{\circ}C\;,250^{\circ}C\;,$ and $300^{\circ}C$ for 1 hour in a vacuum to improve soft magnetic properties. The solenoidal micro-inductors fabricated by MEMS technique were $500{\sim}1,000{\mu}m$ in length with $10{\sim}20$ turns. The changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. Since the permeability of ultra soft magnetic microwire is changing rapidly as a function of external magnetic field. The inductance ratio as well as magnetoimpedance ratio (MIR) in a LC-resonator was varied drastically as a function of external magnetic field. The MIR curves can be tuned very precisely to obtain maximum sensitivity. A prototype magnetic sensor device consisting of the developed microinductors with a multivibrator circuit was test successfully.

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Development of Magnetoimpedance Sensor Utilizing Soft Magnetic Amorphous Ribbon with Exchange Coupling and Application to Nondestructive Testing (교환결합을 가진 연자성 비정질 리본을 이용한 자기 임피던스 센서 개발과 비파괴검사 응용)

  • Yoon, Seok-Soo;Kim, Gun-Woo;Lee, Sang-Hun;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.5
    • /
    • pp.401-406
    • /
    • 2008
  • Recently, portable magnetic sensors with high sensitivity are strongly required for various applications such as biosensor, nondestructive testing and directional sensor. A novel magnetic sensor system was developed by utilizing giant magnetoimpedance(MI) effect of soft magnetic ribbons. The sensor system consists of sensing head of $Co_{66}Fe_{4}Si_{15}B_{15}$ ribbon having asymmetric MI characteristics through exchange coupling produced by field-annealing in open air and circuit for signal processing. The sensor system showed almost linear characteristics in dynamic range of $-1\;Oe\;{\sim}\;1\;Oe$ and sensitivity of 10.5 V/Oe. The sensor was applicable to nondestructive testing system to detect defects in wire ropes.

Development of the Caliper System for a Geometry PIG Based on Magnetic Field Analysis

  • Kim, Dong-Kyu;Cho, Sung-Ho;Park, Seoung-Soo;Yoo, Hui-Ryong;Park, Yong-Woo;Kho, Young-Tai;Park, Gwan-Soo;Park, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1835-1843
    • /
    • 2003
  • This paper introduces the development of the caliper system for a geometry PIG (Pipeline Inspection Gauge). The objective of the caliper system is to detect and measure dents, wrinkles, and ovalities affect the pipe structural integrity. The developed caliper system consists of a finger arm, an anisotropic permanent magnet, a back yoke, pins, pinholes and a linear hall effect sensor. The angle displacement of the finger arm is measured by the change of the magnetic field in sensing module. Therefore the sensitivity of the caliper system mainly depends on the magnitude of the magnetic field inside the sensing module. In this research, the ring shaped anisotropic permanent magnet and linear hall effect sensors were used to produce and measure the magnetic field. The structure of the permanent magnet, the back yoke and pinhole positions were optimized that the magnitude of the magnetic field range between a high of 0.1020 Tesla and a low of zero by using three dimensional nonlinear finite element methods. A simulator was fabricated to prove the effectiveness of the developed caliper system and the computational scheme using the finite element method. The experimental results show that the developed caliper system is quite efficient for the geometry PIG with good performance.

Some case histories to detect underwater buried objects by electrical and magnetic methods (수중 매장물 조사에 응용되는 전기 및 자기 탐사사례)

  • JUNG Hyun Key;Park Yeong-Sue;Lim Mutaek;Rim Hyoungrae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.118-137
    • /
    • 2004
  • Recently underwater geophysical problems for historical relics or UXO's are raised frequently. This study includes the applicabilities and limitations of the recent underwater metal detector and domestic case stories for underwater survey by electrical and magnetic method. Direct or indirect case stories are electrical and vertical magnetic gradiometry surveys beneath Han-river bottom for planning subway tunnel, electrical exploration on lake-bottom, electrical exploration on the tidal flats using high-power transmitter, and borehole three-component magnetic and electromagnetic surveys for detecting the undersea objects. A design of potable real-time, high-speed measurement system using multi-channel array sensors is also introduced here. Further study will be focussed on practical field applications of the fast water-bottom scanning system which is lately required by actual field.

  • PDF

Annealing Effects of Amorphous Cores for the Application of Flux-gate Sensors (Flux-gate 센서용 비정질 코아의 열처리효과)

  • 김용준;손대락;손동환
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.3
    • /
    • pp.134-140
    • /
    • 2001
  • Flux-gate magnetometer was developed in 1930's, and it has been widely used for the low magnetic field measurements. In this work, we have employed amorphous ribbon 2714A produced by Allied Chem. Co. as sensor core material. To develop low noise, low power consumption, and high reliability flux-gate magnetometer, we have measured ac magnetic properties depending on the annealing conditions. As quenched state amorphous core shows high noise level and ac magnetic properties were changed under the condition of accelerated aging test, but amorphous ribbon, which was annealed under 350 $\^{C}$ during 1 hour, shows low noise level of 0.1 nT in the frequency range of dc∼10 Hz which was 10 times better than the as quenched amorphous ribbon. Under accelerated aging test, ac magnetic properties such as squareness and coercivity of the annealed samples show higher reliability and approached to a certain limiting value as exponential function. We can see that high reliability and low noise flux-gate magnetometer could be developed, if we consider this ac magnetic properties change in the sensor design.

  • PDF

Study for Development of Nondestructive Inspection Device in Natural Gas Pipeline Using MFL Technology (MFL을 이용한 천연가스 배관용 비파괴 검사장비 개발에 관한 연구)

  • Cho S.H.;Kim D.K.;Park D.J.;Park S.S.;Yoo H.R.;Koo S.J.;Rho Y.W.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.6 no.1 s.17
    • /
    • pp.10-16
    • /
    • 2002
  • This paper introduces developed prototype intelligent pig which detects corrosion on pipeline by using Magnetic Flux Leakage technology. The 8 inch developed MFL(Magnetic Flux Leakage) pig is composed of 5 yokes which magnetize pipeline wall and 45 Hall sensors which detect MFL signal. The designed MFL modules are analyzed by using magnetic circuit method in order to confirm whether pipeline wall is fully saturated. A variety of artificial defects are manufactured on 8 inch diameter steel pipeline in order to acquire MFL signals. So leakage flux of the axial, radial and circumferential component was acquired as defects. The results of this paper show that design technique for 8 inch MFL pig can be applied to large diameter MFL pig and 0.5mm defect depth can be detected.

  • PDF