• Title/Summary/Keyword: magnetic sensors

Search Result 563, Processing Time 0.026 seconds

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

A comparison of the characteristics of External type UHF partial discharge sensor for metal covered barriers in GIS (GIS 스페이서의 에폭시 주입구 장착형 UHF PD 센서의 성능 비교)

  • Hwang, Chul-Min;Kim, Young-No;Lee, Young-Sang;Kwak, Joo-Sik;Park, Ki-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2265-2267
    • /
    • 2005
  • We present detailed studies of externally applicable UHF PD sensors for a metal covered epoxy barrier with a small opening of epoxy injection-hole. The sensors were attached at the surface of injection hole of a metal covered epoxy barrier. 3-Dimensional electro magnetic simulations were performed to analyze electric-field distribution of the GIS and epoxy barrier with injection hole. Sensor structures were designed and analyzed using the 3-D EM simulator then fabricated for experimental verification. Sensor performance was measured in terms of spectral response and detected peak power. Real scale GIS and epoxy barriers were used to test and measure various aspect of performance of the sensors.

  • PDF

Noise Reduction of Geomagnetic Signals From Randomly Oriented Sensors

  • Song, Yong J.;Lee, Choong S.;Kim, Ki C.;Lim, Sun-Ho;Kim, Duk-Yung;Son, Dong-Hwan;Kim, Dae Y.
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.69-74
    • /
    • 2004
  • A method of processing signals of unaligned geomagnetic sensors placed on the seabed is presented. The offset drifts of the fluxgate sensors are processed by polynomial fitting and the orientations of the sensor axes are found by minimizing the noise power using wavelet analysis. The noise power was reduced by 9.1 dB by processing the components of magnetic field separately using subtraction filter, polynomial fitting and wavelet analysis.

A Study on the Coupling Coefficient between ATP Antenna and ATS Antenna in Combined On-Board System (차상통합신호시스템에서 ATP 안테나와 ATS 안테나 사이의 결합계수에 관한 연구)

  • Kim, Doo-Gyum;Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.211-225
    • /
    • 2011
  • Railroad signalling systems are to control intervals and routes of trains. There are ATS(Automatic Train Stop), ATP(Automatic Train Protection), ATO(Automatic Train Operation) and ATC(Automatic Train Control) system. Trains are operated in the section which is met on the signalling system because various signalling systems are used in Korea. On the other words, trains are not operated in the section which is used in the other signalling system. To solve this problem, recently combined on-board system has been developed. The combined on-board system is designed by doubling the ATS, ATP and ATC system. Information signal is received by magnetic sensors in the ATC system and is received by antennas in the ATS and ATP system. Therefore, it is possible to arise transmission problems by magnetic coupling. In this paper, electric model of the ATS and ATP antenna is suggested and interference frequency by the magnetic coupling between the ATS and ATP antenna is estimated numerically. As a results of the magnetic coupling, the value of the magnetic coupling is presented without magnetic induction.

  • PDF

Simultaneous Detection Properties of Organic Vapor, Pressure Difference and Magnetic Field using a Rugate-structured Free-standing Porous Silicon Film (Rugate 구조를 갖는 자립형 다공성 실리콘 박막을 이용한 유기 증기, 압력차, 자기장의 동시 감응 특성)

  • Han, Seong-Beom;Lee, Ki Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.186-191
    • /
    • 2017
  • In this study, we investigated the simultaneous detection properties of organic vapor, pressure difference, and magnetic field using a single rugate-structured free-standing porous silicon (RFPS) thin film. Both the wavelength and the intensity of the rugate peaks were changed in the reflectivity spectrum measured at the thin film surface while the organic vapor was exposed to the RFPS thin film. However, when the pressure difference and the magnetic field were exposed to the film, only the rugate peak intensity was changed. Therefore, it is possible to distinguish whether or not the organic vapor is detected by simultaneously changing the rugate peak wavelength and intensity. In addition, a method of distinguishing between the pressure difference and the magnetic field detection signal has been derived by rapidly modulating the direction of the magnetic field. This study shows that it is possible to simultaneously detect and distinguish various objects using a single RFPS thin film, and it is found that porous silicon can be utilized as a sensor sufficiently.

A New Vibration Energy Harvester Using Magnetoelectric Transducer

  • Yang, Jin;Wen, Yumei;Li, Ping;Dai, Xianzhi;Li, Ming
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • Magnetoelectric (ME) transducers were originally intended for magnetic field sensors but have recently been used in vibration energy harvesting. In this paper, a new broadband vibration energy harvester has been designed and fabricated to be efficiently applicable over a range of source frequencies, which consists of two cantilever beams, two magnetoelectric (ME) transducers and a magnetic circuit. The effects of the structure parameters, such as the non-linear magnetic forces of the ME transducers and the magnetic field distribution of the magnetic circuit, are analyzed for achieving the optimal vibration energy harvesting performances. A prototype is fabricated and tested, and the experimental results on the performances show that the harvester has bandwidths of 5.6 Hz, and a maximum power of 0.25 mW under an acceleration of 0.2 g (with g = $9.8\;ms^2$).

A Method for Reducing Path Tracking Errors of an AGV with a Trailer (대차가 있는 무인 운반차의 경로 추종 오차 감소 방법)

  • Lee, Ji Young;Sung, Young Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.132-138
    • /
    • 2014
  • The use of AGVs(Automated Guided Vehicles) are increasing in many factories. The most widely used AGV system is that magnetic tapes are attached on the factory floor to make guided path and an AGV equipped with a magnetic sensor follows the path by sensing magnetic flux. In this AGV system, usually a magnetic sensor is attached on the front end of an AGV to detect the guided path and the sensor generates analog voltages proportional to the magnetic flux. The problem is that the AGV in use has rather big tracking errors because the accurate orientation of the AGV can not be detected by using only one magnetic sensor. In this paper, we propose a method to minimize the path tracking errors. In our method, one additional sensor is attached on the rear end of the AGV to estimate the orientation of the AGV and to control more accurately the AGV according to the estimated orientation of the AGV. We performed several experiments and the results successfully show the feasibility of the proposed method.

Vibration Measurement of an Automobile Exhaust System in Operation (구동중인 자동차 배기계의 진동 특성 측정)

  • Kim, Sung-Kook;Lee, Jong-Nam;Han, Soon-Woo;Chung, Tae-Jin;Lee, Sin-Young;Jang, Gang-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.235-240
    • /
    • 2007
  • In this work, the operational deflection shape(ODS) of an automobile exhaust system is measured by using a recently-developed magnetic sensor. The magnetic sensor is composed of a solenoid and two pairs of permanent magnets generating an antisymmetric magnetic field in the lateral direction inside the solenoid. Lateral movement of a ferromagnetic pipe inside the magnetic field of the suggested sensor induces an electromotive force in the solenoid corresponding to the lateral velocity of the pipe. Due to the simplicity and non-contact characteristics of the magnetic sensor, dynamic behaviors of the structures operating under high temperature such as an exhaust pipe can be efficiently observed. It is shown that the lateral ODS of an exhaust system can be successfully measured by the suggested sensors.

Constraint-Combined Adaptive Complementary Filter for Accurate Yaw Estimation in Magnetically Disturbed Environments

  • Jung, Woo Chang;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.81-87
    • /
    • 2019
  • One of the major issues in inertial and magnetic measurement unit (IMMU)-based 3D orientation estimation is compensation for magnetic disturbances in magnetometer signals, as the magnetic disturbance is a major cause of inaccurate yaw estimation. In the proposed approach, a kinematic constraint is used to provide a measurement equation in addition to the accelerometer and magnetometer signals to mitigate the disturbance effect on the orientation estimation. Although a Kalman filter (KF) is the most popular framework for IMMU-based orientation estimation, a complementary filter (CF) has its own advantages over KF in terms of mathematical simplicity and ease of implementation. Accordingly, this paper introduces a quaternion-based CF with a constraint-combined correction equation. Furthermore, the weight of the constraint relative to the magnetometer signal is adjusted to adapt to magnetic environments to optimally deal with the magnetic disturbance. In the results of our validation experiments, the average and maximum of yaw errors were $1.17^{\circ}$ and $1.65^{\circ}$ from the proposed CF, respectively, and $8.88^{\circ}$ and $14.73^{\circ}$ from the conventional CF, respectively, showing the superiority of the proposed approach.

Design and Fabrication of Digital 3-axis Magnetometer for Magnetic Signal from Warship (함정 자기신호 측정용 3-축 디지털 자기센서 설계 및 제작에 관한 연구)

  • Kim, Eunae;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.123-127
    • /
    • 2014
  • We developed a digital 3-axis flux-gate magnetometer for magnetic field signal measurement from warship during demagnetizing and degaussing processes. For the magnetometer design, we considered following points; the distance between magnetic field measurement station and magnetometer located under sea is about several 100 m, the magnetometer is exposed to magnetic field of ${\pm}1mT$ during demagnetizing process, and magnetometer is located under the sea about 30 m depth. To overcome long distance problem, magnetometer could be operated on wide input supply voltage range of 16~36 V using DC/DC converter, and for the data communication between the magnetometer and measurement station a RS422 serial interface was employed. To improve perming effect due to the ${\pm}1mT$ during demagnetizing process, magnetometer could be compensated external magnetic field up to ${\pm}1mT$ but magnetic field measuring rang is only ${\pm}100{\mu}T$. The perming effect was about ${\pm}2nT$ under ${\pm}1mT$ external magnetic field. The magnetometer was tested water vessel with air pressure up to 6 bar for the sea water pressure problems. Linearity of the magnetometer was better than 0.01 % in the measuring range of ${\pm}0.1mT$ and noise level was $30pT/\sqrt{Hz}$ at 1 Hz.