• Title/Summary/Keyword: magnetic semiconductors

Search Result 71, Processing Time 0.032 seconds

Ferromagnetism and Anomalous Hall Effect of $TiO_2$-based superlattice films for Dilute Magnetic Semiconductor Applications

  • Jiang, Juan;Seong, Nak-Jin;Jo, Young-Hun;Jung, Myung-Hwa;Yang, Jun-Mo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.41-41
    • /
    • 2007
  • For use in spintronic materials, dilute magnetic semiconductors (DMS) are under consideration as spin injectors for spintronic devices[l]. $TiO_2$-based DMS doped by a cobalt, iron, and manganese et al. was recently reported to show ferromagnetic properties, even at temperatures above 300K and the magnetic ordering was explained in terms of carrier-induced ferromagnetism, as observed for a III-V based DMS. An anomalous Hall effect (AHE) and co-occurance of superparamagnetism in reduced Co-doped rutile $TiO_{2-\delta}$ films have also been reported[2]. Metal segregation in the reduced metal-doped rutile $TiO_2-\delta$ films still remains as problems to solve the intrinsic DMS properties. Superlattice films have been proposed to get dilute magnetic semiconductor (DMS) with intrinsicroom-temperature ferromagnetism. For a $TiO_2$-based DMS superlattice structure, each layer was alternately doped by two different transition metals (Fe and Mn) and deposited to a thickness of approximately $2.7\;{\AA}$ on r-$Al_2O_3$(1102) substrates by pulsed laser deposition. The r-$Al_2O_3$(1102) substrates with atomic steps and terrace surface were obtained by thermal annealing. Samples of $Ti_{0.94}Fe_{0.06}O_2$(TiFeO), $Ti_{0.94}Mn_{0.06}O_2$(TiMnO), and $Ti_{0.94}(Fe_{0.03}Mn_{0.03})O_2$ show a low remanent magnetization and coercive field, as well as superparamagnetic features at room temperature. On the other hand, superlattice films (TiFeO/TiMnO) show a high remanent magnetization and coercive field. An anomalous Hall effect in superlattice films exhibits hysisteresis loops with coercivities corresponding to those in the ferromagnetic Hysteresis loops. The superlattice films composed of alternating layers of $Ti_{0.94}Fe_{0.06}O_2$ and $Ti_{0.94}Mn_{0.06}O_2$ exhibit intrinsic ferromagnetic properties for dilute magnetic semiconductor applications.

  • PDF

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

Design and Implementation of integrated drive circuit for a small BLDG Motor (드라이브 내장형 소형 BLDC 모터의 설계와 구현)

  • Choi, J.H.;Lee, J.B.;Rhyu, S.H.;Chung, J.K.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.170-172
    • /
    • 2003
  • Among low power servo applications, classical DC motors are very popular because they are reasonably cheap and easy to control. The main disadvantage is the mechanical collector which has only a limited life period. Also, brush sparking can destroy the rotor coil, generate EMC problems. So permanent magnet brushless do motors and drives are being used increasingly in a wide range of applications. This has been made possible with the advantages of high performance permanent magnets with high coercively and residual magnetic, which make it possible for the PM to have superior power density, torque to inertia ratio and efficiency, when compared to an induction or conventional dc machine. This paper presents the design of a PM brushless dc motor drive simplistically operates as a classical dc motor. The BLDC motor drive system for this paper composes to the power integrated circuits, the one chip device. And several simple semiconductors add to drive system for a motor drive system simplistically operates as a conventional dc motor. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

Metal-Insulator Transition of Vanadium Dioxide Based Sensors (바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구)

  • Baik, Jeong Min
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.314-319
    • /
    • 2014
  • Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

Magnetoresistance and Hall coefficient in $V_xGe_{l-x}$ single crystal (VGe 단결정의 자기저항과 홀 계수)

  • Park, Jiyoun;Park, Sungyoul;Park, Jeongyong;Hong, Soon-Cheol;Sunglae Cho;Park, Yongsup;Lee, Gu-Won;Park, Hyun-Min;Kim, Y. C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.154-155
    • /
    • 2003
  • Substituting transition metals such as V, Cr, Mn, Fe, Co and Ni into semiconductors have been of interest because of its unique electrical and magnetic properties. It was reported that the magnetoresistance(MR) ratio of CrGe was 1.7% and 1 4% at 120 K in fields of 0.5 and 5 T, respectively. The MR ratio of FeGe was 19% at 180K. The electrical resistivity of CrGe changed according to Cr concentration. In this talk, we report transport properties of V-doped Ge single crystals with several different V concentrations. The carrier densities and mobilities will be determined from Hall measurement.

  • PDF

Classification and Analysis of Switched Reluctance Converters

  • Ahn, Jin-Woo;Liang, Jianing;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.571-579
    • /
    • 2010
  • This paper reviews and analyzes converters for SRM(Switched Reluctance Motor) drive. Conventional classification focuses on the number of power switches and diodes. It is easy to find the number of semiconductors and the cost by counting the number of active components, but it does not show the important characteristics of a power converter. The voltage ratings for the power switches and diodes are also difficult to identify. This paper proposes a switched reluctance (SR) converter configuration that is classified based on the commutation type and magnetic energy path. The converter has three parts: utility interface, front-end circuit, and power converter. Based on the overview on the conventional SR drive, the most important characteristic of the converter is determined by the topology of front-end in conjunction with the power converter. An SR converter has two parts: front-end and power converter. Inasmuch as the capacitive front-end is widely used for voltage source converters, this paper focuses on topologies for the front-end.

Microstructure and Magnetic Properties of Zn1-xCoxO Thin Films Grown by Sol-Gel Process (Sol-Gel 법으로 제작한 Zn1-xCoxO 박박의 미세조직 및 자기적 특성)

  • Ko, Yoon-Duk;Tai, Weon-Pil;Kim, Eung-Kwon;Kim, Ki-Chul;Choi, Choon-Gi;Kim, Jong-Min;Song, Joon-Tae;Park, Tae-Seok;Suh, Su-Jeung;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.475-482
    • /
    • 2005
  • Zn$_{l-x}$Co$_{x}$O (x = 0.05 - 0.20) films were grown on Coming 7059 glass by sol-gel process. A homogeneous and stable Zn$_{l-x}$Co$_{x}$O sol was prepared by dissolving zinc acetate dihydrate (Zn(CH$_{3}$COO)$_{2}$$\cdot$2H$_{2}$O), cobalt acetate tetrahydrate ((CH$_{3}$)$_{2}$$\cdot$CHOH) and aluminium chloride hexahydrate (AlCl$_{3}$ $\cdot$ 6H$_{2}$O) as solute in solution of isopropanol ((CH$_{3}$)$_{2}$$\cdot$CHOH) and monoethanolamine (MEA:H$_{2}$NCH$_{2}$CH$_{2}$OH). The films grown by spin coating method were postheated in air at 650°C for 1 h and annealed in the condition of vacuum (5 $\times$ 10$^{-6}$ Torr) at 300$^{\circ}C$ for 30 min and investigated the nature of c-axis preferred orientation and physical properties with different Co concentrations. Znl_xCOxO thin films with different Co concentrations were well oriented along the c-axis, but especially a highly c-axis oriented Zn$_{l-x}$Co$_{x}$O thin film was grown at 10 at$\%$ Co concentration. The transmittance spectra showed that Zn$_{l-x}$Co$_{x}$O thin films occur typical d-d transitions and sp-d exchange interaction became activated with increasing Co concentration. The electrical resistivity of the films at 10 at$\%$ Co had the lowest value due to the highest c-axis orientation. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster was formed, and the ferromagnetic properties appeared, respectively. The characteristics of the electrical resistivity and room temperature ferromagnetism of Zn$_{l-x}$Co$_{x}$O thin films suggested the possibility for the application to dilute magnetic semiconductors.

WN 박막을 이용한 저항 변화 메모리 연구

  • Hong, Seok-Man;Kim, Hui-Dong;An, Ho-Myeong;Kim, Tae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.403-404
    • /
    • 2013
  • 최근 scaling down의 한계에 부딪힌 DRAM과 Flash Memory를 대체하기 위한 차세대 메모리(Next Generation Memory)에 대한 연구가 활발히 진행되고 있다. ITRS (international technology roadmap for semiconductors)에 따르면 PRAM (phase change RAM), RRAM (resistive RAM), STT-MRAM (spin transfer torque magnetic RAM) 등이 차세대 메모리로써 부상하고 있다. 그 중 RRAM은 간단한 구조로 인한 고집적화, 빠른 program/erase 속도 (100~10 ns), 낮은 동작 전압 등의 장점을 갖고 있어 다른 차세대 메모리 중에서도 높은 평가를 받고 있다 [1]. 현재 RRAM은 주로 금속-산화물계(Metal-Oxide) 저항 변화 물질을 기반으로 연구가 활발하게 진행되고 있다. 하지만 근본적으로 공정 과정에서 산소에 의한 오염으로 인해 수율이 낮은 문제를 갖고 있으며, Endurance 및 Retention 등의 신뢰성이 떨어지는 단점이 있다. 따라서, 본 연구진은 산소 오염에 의한 신뢰성 문제를 근본적으로 해결할 수 있는 다양한 금속-질화물(Metal-Nitride) 기반의 저항 변화 물질을 제안해 연구를 진행하고 있으며, 우수한 열적 안정성($>450^{\circ}C$, 높은 종횡비, Cu 확산 방지 역할, 높은 공정 호환성 [2] 등의 장점을 가진 WN 박막을 저항 변화 물질로 사용하여 저항 변화 메모리를 구현하기 위한 연구를 진행하였다. WN 박막은 RF magnetron sputtering 방법을 사용하여 Ar/$N_2$ 가스를 20/30 sccm, 동작 압력 20 mTorr 조건에서 120 nm 의 두께로 증착하였고, E-beam Evaporation 방법을 통하여 Ti 상부 전극을 100 nm 증착하였다. I-V 실험결과, WN 기반의 RRAM은 양전압에서 SET 동작이 일어나며, 음전압에서 RESET 동작을 하는 bipolar 스위칭 특성을 보였으며, 읽기 전압 0.1 V에서 ~1 order의 저항비를 확보하였다. 신뢰성 분석 결과, $10^3$번의 Endurance 특성 및 $10^5$초의 긴 Retention time을 확보할 수 있었다. 또한, 고저항 상태에서는 Space-charge-limited Conduction, 저저항 상태에서는 Ohmic Conduction의 전도 특성을 보임에 따라 저항 변화 메카니즘이 filamentary conduction model로 확인되었다 [3]. 본 연구에서 개발한 WN 기반의 RRAM은 우수한 저항 변화 특성과 함께 높은 재료적 안정성, 그리고 기존 반도체 공정 호환성이 매우 높은 강점을 갖고 있어 핵심적인 차세대 메모리가 될 것으로 기대된다.

  • PDF

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Microstructure and Magnetic Properties of Zn1-xCoxO Film Prepared by Pulsed DC Magnetron Sputtering (펄스 DC 마그네트론 스퍼터링법에 의한 Zn1-xCoxO 박막의 미세조직 및 자기적 특성)

  • Ko, Yoon-Duk;Ko, Seok-Bae;Choi, Moon-Soon;Tai, Weon-Pil;Kim, Ki-Chul;Kim, Jong-Min;Soh, Su-Jeung;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.211-217
    • /
    • 2005
  • [ $Zn_{1-x}Co_{x}O$ (x=0-0.3) films were grown on Corning 7059 glasses by asymmetrical bipolar pulsed dc magnetron sputtering. The c-axis orientation along (002) plane was enhanced with increasing Co concentration. The $Zn_{1-x}Co_{x}O$ films are grown with fibrous grains of tight dome shape. The transmittance spectra measured from UV-visible showed that sp-d exchange interactions and typical d-d transitions become activated with increasing Co concentration. The electrical resistivity of $Zn_{1-x}Co_{x}O$ films increased with increasing Co concentration, especially it increased greatly at $30at\% Co. X-ray photoelectron spectroscopy and alternating gradient magnetometer analyses indicated that no Co metal cluster is formed and the ferromagnetic properties are exhibited. The low electrical resistivity and room temperature ferromagnetism of $Zn_{1-x}Co_{x}O$ thin films suggested the possibility of the application to Diluted Magnetic Semiconductors (DMSs).