• Title/Summary/Keyword: magnetic scale

Search Result 702, Processing Time 0.029 seconds

X-RAYING LARGE-SCALE STRUCTURE

  • HENRY J. PATRICK
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.371-374
    • /
    • 2004
  • We review the observational evidence for the existence of a warm-hot intergalactic medium (WHIM). We expect that the morphology of this material is similar to that of cosmic rays and magnetic fields in large-scale structure, i.e., filaments connecting clusters of galaxies. Direct evidence for the WHIM, either in emission or absorption, is weak.

OBSERVATIONAL TESTS OF CHROMOSPHERIC MAGNETIC RECONNECTION

  • CHAE JONGCHUL;MOON YONG-JAE;PARK SO-YOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.13-20
    • /
    • 2003
  • Observations have indicated that magnetic reconnect ion may occur frequently in the photosphere and chromosphere as well as in the solar corona. The observed features include cancelling magnetic features seen in photospheric magnetograms, and different kinds of small-scale activities such as UV explosive events and EUV jets. By integrating the observed parameters of these features with the Sweet-Parker reconnect ion theory, an attempt is made to clarify the nature of chromospheric magnetic reconnection. Our results suggest that magnetic reconnect ion may be occurring at many different levels of the photosphere and chromosphere without a preferred height and at a faster speed than is predicted by the Sweet-Parker reconnect ion model using the classical value of electric conductivity. Introducing an anomalous magnetic diffusivity 10-100 times the classical value is one of the possible ways of explaining the fast reconnect ion as inferred from observations.

How strong magnetic fields can be in AGN accretion flows

  • Pariev, Vladimir
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.22.2-22.2
    • /
    • 2008
  • Radio and X-ray observations of radio lobes in galaxy clusters indicate large energies stored in the magnetic fields in the radio lobes. These magnetic fields are undoubtedly produced and amplified by the accretion onto the central supermassive black hole. I review recent progress and remaining problems in our understanding of the ways how these magnetic fields can be produced and amplified in the accretion disks and what can be the limiting strength of the magnetic field. The major remaining issue is how ordered magnetic spirals (or jets) can emerge from the turbulent small scale magnetic fields produced by MRI. Another issue is the ratio of the axial to the azimuthal magnetic field in jets.

  • PDF

Measurement of activation magnetic moment in ferromagnetic thin films

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.200-206
    • /
    • 2000
  • We have investigated the activation magnetic moment, which characterizes the basis magnetic moment acting as a single magnetic particle during magnetization reversal. The activation magnetic moment was measured from each local area on continuous ferromagnetic thin films, by analyzing the magnetic field dependence of magnetization reversal of the corresponding local area based on a thermally activated relaxation process. It was found that the activation magnetic moment was nonuniform on submicrometer scale; the fluctuation increased with increasing the number of layers in Co/Pd multilayers. The distribution could be well analyzed by exp($\delta$m$\^$3/2/), where $\delta$m is the deviation of the activation magnetic moment from the mean value.

  • PDF

Measurement of Activation Magnetic Moment in Ferromagnetic Thin Films

  • Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.70-72
    • /
    • 2001
  • We have investigated the activation magnetic moment, which characterizes the basic magnetic moment acting as a single magnetic particle during magnetization reversal. The activation magnetic moment was measured from each local area on continuous ferromagnetic thin films, by analyzing the magnetic field dependence of magnetization reversal of the corresponding local area, based on a thermally activated relaxation process. It was found that the activation magnetic moment was nonuniform on a submicrometer scale; the fluctuation increased with increasing the number of layers in Co/Pd multilayers. The distribution could be well described by exp($\delta m^{3/2}$), where $\delta$m is the deviation of the activation magnetic moment from the mean value.

  • PDF

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.

MHD Turbulence in Expanding and Contracting Media

  • Park, Junseong;Ryu, Dongsu;Cho, Jungyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2015
  • We investigate the decaying incompressible MHD turbulence by including the effect of the expansion and contraction of background medium. In such an environment, incompressible MHD turbulence has two kinds of time scale. One is the eddy turn-over time (teddy), the other is the expansion/contraction time (texp-cntr). The turbulence is expected to behave differently according to the relationship between the two time scales. For instance, for teddy < texp-cntr, the turbulence would be decay more or less as in a static medium. On the other hand, for teddy > texp-cntr, the effects of expansion and contraction would be dominant. We examine the properties of turbulence in these two regime cases. Based on it, we derive a scaling for the time evolution of flow velocity and magnetic field. (i) In the decay effect dominant case, the velocity and magnetic field scale as $\sqrt{{\rho}v}{\sim}a^{-3}$, $b{\sim}a^{-2.5}$(expanding media) and $\sqrt{{\rho}v}{\sim}a^{-2}$, $b{\sim}a^{-1.5}$(contracting media). The total energy and residual spectra follow the $E^T_k{\sim}k^{-5/3}$, $E^R_k{\sim}k^{-7.3}$ in the inertial range. (ii) In the expanding and contracting dominant case, the velocity and magnetic field scale as $\sqrt{{\rho}v}{\sim}a^{-2.5}$, $b{\sim}a^{-2}$ (expanding/contracting media). The Kinetic and magnetic energy spectra follow the $E^K_k{\sim}a^{-5}$, $E^M_k{\sim}a^{-4}$. We have confirmed that scaling of velocity and magnetic filed is almost the same from the analytic estimates and computational models

  • PDF

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Analysis of ELF Magnetic Field Reduction Ratio on Passive Loop Using Scale Down Model of Transmission Line (축소 모델을 이용한 수동 루프 송전선 자기장 저감율 분석)

  • Cho, Yeun-Gyu;Myung, Sung-Ho;Lee, Jae-Bok;Chang, Sug-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1231-1239
    • /
    • 2006
  • In this research magnetic field reduction effect of each passive loop was analyzed by using the scale down models of transmission lines. This paper examined magnetic field reduction effect of the passive loop that will be applied to actual facility through the experiment, which is about double vertical transmission line and horizontal transmission line. Consequently, by confirming the fact that magnetic field reduction effect can be obtained to 50 % by passive loop without reactive compensation, we insured technology about application of passive loop. And the case of 3 turns of loop showed two times reduction effect than that of 1 turns of loop in reducing magnetic field. Vertical passive loop is more efficient than horizontal passive loop in the aspect of reducing magnetic field on double vertical transmission lines. What is more, vertical passive loop showed good effect of reducing magnetic field in a far distance as well as in a short distance.