• 제목/요약/키워드: magnetic scale

검색결과 696건 처리시간 0.025초

전도냉각형 고온초전도 자석을 이용한 제지폐수의 자기분리에 의한 정수 (Purification of wastewater from paper factory by cryo-cooled high-$T_c$ superconducting magnetic separator)

  • 하동우;김태형;손명환;권준모;백승규;오상수;고락길;하홍수;김호섭;김영훈;강채훈;하태욱
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.4-4
    • /
    • 2009
  • Paper factories use a large amount of water and same amount of wastewater is generated. It is important to recycle the wastewater because of water shortages and water pollution. The existing water treatment facilities like precipitation process need large-scale equipment and wide space to purify the wastewater of paper factory. High gradient magnetic separation (HGMS) system has the merits to purify rapidly because of large voids at filter and to occupy small space. In this paper, two types of superconducting magnets were used for HGMS systems. Cryo-cooled Bi-2223 superconducting magnet system with 70 mm room temperature bore and 200 mm of height was prepared. Cryo-cooled Nb-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator. Magnetic filters were designed by the analysis of magnetic field distribution at superconducting magnets. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. The effects of magnetic separation of wastewater were investigated as variation of magnetic field strength and flow rate of wastewater.

  • PDF

자기장을 활용한 통증치료기의 효력평가 (Efficacy Evaluation of Magnetic P.)

  • 윤유식;김선형;최선미;문진석;강동근;김영;안영복;이종철;정우진
    • 한국한의학연구원논문집
    • /
    • 제9권2호
    • /
    • pp.121-130
    • /
    • 2003
  • The goal of this study is construction and efficacy evaluation of MPC-25 (Magnetic Pain Control-25), a medical device using magnetic stimulation. MPC-25 consists of a main body containing power supply and control module and a bed containing magnetic core and coil. In distinction from electric pain control medical devices, magnetic pain control system is non-contact, so the patients need not take off their clothes to be treated. High amplitude current pulses are applied to a magnetic coil and induce time varying magnetic field generating eddy current in a conductor like human body. Clinical efficacy test was performed in patients suffering from musculoskeletal pain of lumbar, shoulder and joint. Degree of pain before and after treatment for 30 minutes was compared using Visual Analogous Scale. As a result, 14 cases out of 20 showed decreased pain perception, so the rate of efficacy is 70%. Reduction of pain perception was statistically significant (P=0.001 by Wilcoxon Signed Rank Test).

  • PDF

A cylindrical shell model for nonlocal buckling behavior of CNTs embedded in an elastic foundation under the simultaneous effects of magnetic field, temperature change, and number of walls

  • Timesli, Abdelaziz
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.581-593
    • /
    • 2021
  • This model is proposed to describe the buckling behavior of Carbon Nanotubes (CNTs) embedded in an elastic medium taking into account the combined effects of the magnetic field, the temperature, the nonlocal parameter, the number of walls. Using Eringen's nonlocal elasticity theory, thin cylindrical shell theory and Van der Waal force (VdW) interactions, we develop a system of partial differential equations governing the buckling response of CNTs embedded on Winkler, Pasternak, and Kerr foundations in a thermal-magnetic environment. The pre-buckling stresses are obtained by applying airy's stress function and an adjacent equilibrium criterion. To estimate the nonlocal critical buckling load of CNTs under the simultaneous effects of the magnetic field, the temperature change, and the number of walls, an optimization technique is proposed. Furthermore, analytical formulas are developed to obtain the buckling behavior of SWCNTs embedded in an elastic medium without taking into account the effects of the nonlocal parameter. These formulas take into account VdW interactions between adjacent tubes and the effect of terms involving differences in tube radii generally neglected in the derived expressions of the critical buckling load published in the literature. Most scientific research on modeling the effects of magnetic fields is based on beam theories, this motivation pushes me to develop a cylindrical shell model for studying the effect of the magnetic field on the static behavior of CNTs. The results show that the magnetic field has significant effects on the static behavior of CNTs and can lead to slow buckling. On the other hand, thermal effects reduce the critical buckling load. The findings in this work can help us design of CNTs for various applications (e.g. structural, electrical, mechanical and biological applications) in a thermal and magnetic environment.

Clinical efficacy of intermittent magnetic pressure therapy for ear keloid treatment after excision

  • Jun, Dongkeun;Shin, Donghyeok;Choi, Hyungon;Lee, Myungchul
    • 대한두개안면성형외과학회지
    • /
    • 제20권6호
    • /
    • pp.354-360
    • /
    • 2019
  • Background: Keloids are benign fibro-proliferative lesion, related to excessive inflammatory reactions in certain anatomical areas, including the auricles. Their specific etiology remains unclear; nonetheless they exhibit tumor-like characteristics of significant recurrence and cause emotional distress, even with various treatment strategies. We applied intermittent magnetic pressure therapy on ear keloids in combination with surgical excision, and present its effectiveness herein. Methods: Ear keloid patients were treated with surgical excision followed by magnetic pressure therapy. The keloid tissues underwent excision and keloid marginal flaps were utilized for wound closure. Intermittent magnetic pressure therapy was applied 2 weeks after the surgical procedure. The pressure therapy consisted of a 3-hour application and 2-hour resting protocol (9 hr/day), and lasted for 6 months. The results were analyzed 6 months after the therapeutic procedures, using the scar assessment scale. Results: Twenty-two ear keloids from 20 patients were finally reviewed. Among the keloids that completed the therapeutic course, 20 ear keloids out of 22 in total (90.9%) were successfully eradicated. Two patients (2 keloids) exhibited slight under-correction. Postoperative complications such as wound dehiscence or surgical site infection were not noted. The scar assessment scale demonstrated a significant improvement in each index. The intermittent pressure therapy led to patient compliance, and avoided pressure-related pain and discomfort. Conclusion: Excision followed by intermittent pressure application using a magnet successfully reduced the burden of fibro-proliferative keloids, and had good patient compliance. The role of intermittent pressure application and resting should be studied with regard to keloid tissue remodeling.

자기공명영상 촬영 후 발생한 경추 추간판탈출증 환자의 과호흡증후군 호전 1례 (A Clinical Case Report of a Cervical Herniated Intervertebral Disc Patient with Hyperventilation Syndrome Developed after Magnetic Resonance Imaging)

  • 정훈;김동섭;김미령;김은수;김태헌;박지용;박현민;조남훈
    • 척추신경추나의학회지
    • /
    • 제7권1호
    • /
    • pp.75-83
    • /
    • 2012
  • Objectives : The purpose of this study is to investigate the clinical application of acupuncture treatment to a cervical herniated intervertebral disc patient with hyperventilation syndrome developed after magnetic resonance imaging(MRI). Methods : A patient with cervical herniated intervertebral disc got hyperventilation syndrome after taking magnetic resonance imaging. To relieve symptoms, we took paperbag breathing first aid, but it had no effect. So we used acupuncture therapy with strong stimulation. To measure the outcome of the patient's improvement, we observed change of vital sign and verbal numerical rating scale(VNRS). Results : After 8 minutes of acupuncture treatment, the patient had significant improvement in change of vital sign and verbal numerical rating scale(VNRS). Conclusions : In emergency situation, acupuncture treatment as a first aid has a positive effect to control hyperventilation syndrome.

  • PDF

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Comparison of Three Modeling Methods for Identifying Unknown Magnetization of Ferromagnetic Thin Plate

  • Choi, Nak-Sun;Kim, Dong-Wook;Yang, Chang-Seob;Chung, Hyun-Ju;Kim, Hong-Joon;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.799-805
    • /
    • 2011
  • This study presents three different magnetization models for identifying unknown magnetization of the ferromagnetic thin plate of a ship. First, the forward problem should be solved to accurately predict outboard magnetic fields due to the magnetization distribution estimated at a certain time. To achieve this, three different modeling methods for representing remanent magnetization (i.e., magnetic charge method, magnetic dipole array method, and magnetic moment method) were utilized. Material sensitivity formulas containing the first-order gradient information of an objective function were then adopted for an efficient search of an optimum magnetization distribution on the hull. The validity of the proposed methods was tested with a scale model ship, and field signals predicted from the three different models were thoroughly investigated with reference to the experimental data.

철성분 미세먼지 포집을 위한 자성 필터 연구 (Fine Iron Dust Collection by Magnetized Mesh Filters)

  • 박해우;황산;정상귀;김상범;조영민
    • 한국대기환경학회지
    • /
    • 제31권2호
    • /
    • pp.118-130
    • /
    • 2015
  • Fine dust containing iron compounds is of current interests in metro subway as well as large scale industries including iron manufacturing and smelting works. This work attempts to find a new design of magnetic filter module for iron dust capture. It simulated the vertical rectangular duct with metal mesh which might promote electric fields in the duct space. A lab test using coal fly ash composed of 8.66% Fe with the most form of $Fe_3O_4$ and $Fe_2O_3$ showed capability of magnetic collection. It showed the capture efficiency with 80~93% for $PM_{2.5}$ depending on magnetic intensity. Ferromagnetic wire mesh contributed up to 50% of collection increment.

제철 폐수의 고구배 자기분리HGMS(High Gradient Magnetic Seperation) 처리에 관한 연구 (Study on the Purification of Wastewater by Superconducting HGMS for Steelmaking Industry)

  • 김태형;하동우;오상수;하태욱;김영훈;강채훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.360-360
    • /
    • 2008
  • Steelmaking industry is widely known to use a lot of water and same amount of wastewater is generated. Although toxicity of wastewater from Steelmaking industry is low, it contains an amount of various organic materials and Fe-Oxides. It is important to recycle the wastewater because of water shortages and water pollution. In general, large-scale equipment is necessary to process the wastewater. On the other hand, superconducting high gradient magnetic separation (HGMS) system can process the wastewater in the small space. Superconducting HGMS system that had a purpose to purify the wastewater was assembled. Cryo-cooled Nb-Ti superconducting magnet was used for magnetic separator. This system can operate continuously because contaminated filters can keep on returning after cleaning. The various magnetic seeding reactions were investigated to increase the reactivity of coagulation. Filter cleaning system was developed to decrease the quantity of clean water. This research was supported by a grant from Korea Electrotechnology Research Institute, Republic of Korea.

  • PDF

자석식 무한궤도를 가진 모노레일의 동역학 해석 (Dynamic Analysis of Monorail System with Magnetic Caterpillar)

  • 원종성;탁태오
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.47-55
    • /
    • 2012
  • This work deals with dynamic analysis of a monorail system with magnetic caterpillar where magnets are embedded inside each articulated element of the caterpillar, augmenting traction force of main rubber wheels to climb up slope up to 15 degree grade. Considerations are first given to determine stiffness of the primary and secondary suspension springs in order for the natural frequencies of car body and bogie associated with vertical, pitch, roll and yaw motion to be within generally accepted range of 1-2 Hz. Equations for calculating magnetic force needed to climb up given slope are derived, and a magnetic caterpillar system for 1/6 scale monorail is designed based on the derivation. To assess the hill climbing ability and cornering stability, and make sure smooth operation of the side and vertical guiding wheels which is critical for safety, a multibody model that takes into account of every component level design characteristics of car, bogie, and caterpillar is set up. Through hill climbing simulation and comparison with measurement of the limit slope, the validity of the analysis and design of the magnetic caterpillar system are demonstrated. Also by studying the curving behavior, maximum curving speed without rollover, functioning of lateral motion constraint system, the effects of geometry of guiding rails are studied.