• Title/Summary/Keyword: magnetic resonance image

Search Result 944, Processing Time 0.022 seconds

Usefulness of sectional images in dural AVF for the interpretation of venous anatomy

  • Myongjin Kang;Sanghyeon Kim
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • v.26 no.2
    • /
    • pp.119-129
    • /
    • 2024
  • Knowledge of the venous anatomy is essential for appropriately treating dural arteriovenous fistulas (AVFs). It is challenging to determine the overall venous structure despite performing selective angiography for dural AVFs with feeder from multiple selected arteries. This is because only a part of the veins can be observed through the shunt in the selected artery. Therefore, after performing selective angiography of all vessels to understand the approximate venous anatomy, the venous anatomy can be easily understood by closely examining the source image of computed tomographic angiography or magnetic resonance angiography. Through this, it is possible to specify the vein that is to be blocked (target embolization), thereby avoiding extensive blocking of the vein and avoiding various complications. In the case of dural AVF with feeder from single selected artery, if the multiplanar reconstruction image of the three-dimensional rotational computed tomography obtained by performing angiography is analyzed thoroughly, a shunted pouch can be identified. If embolization is performed by targeting this area, unnecessary sinus total packing can be avoided.

RECEMT DEVELOPMENTS IN REAL-TIME MRI

  • Riederer, Stephen J.
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.67-72
    • /
    • 2002
  • Real-time techniques are motivated by a number of factors including the potential for direct acquisition of diagnostic quality images, facilitation of patient-specific imaging parameters, and reduced examination time. Real-time MRI includes not only a rapid pulse sequence but also high speed image reconstruction and easy interactivity. The frame rate of the real-time technique used should be matched to the physiological timeframes under study. Principal applications thusfar have been in localization, fluoroscopic triggering, guidance of other processes, and potentially in the generation of diagnostic images of moving structures.

  • PDF

Visualization of Brain Vessel for MRA Image (MRA영상에서 뇌혈관의 가시화)

  • 김영철;김령주;남상희;문치웅;최흥국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.286-289
    • /
    • 2002
  • 뇌 혈관 영상은 2D로 되어있어 임상에서 뇌의 이상 유무와 질병의 진행 정도를 판별하는데 어려움이 있다. Volume Rendering은 2차원 데이터를 3차원 영상으로 재구성하여 오브젝트의 내부 모습을 3차원으로 볼 수 있게 해주는 장점이 있어 진단에 도움을 줄 수가 있다. MRA(Magnetic Resonance Angiography) 는 MRI(Magnetic Resonance Imaging)을 이용하여 Vascular Imaging 하는 기법이다. MRA 혈관 영상을 가시화하는 방법으로 MIP(Maximum Intensity Projection)를 이용하였다. 본 논문에서는 256×256 크기의 MRA영상 48장을 MIP 로 볼륨 랜더링하여 뇌 혈관 영상을 3차원으로 가시화 하였다.

  • PDF

Image Findings of Primary Squamous Cell Carcinoma of the Pancreas in Patient with Chronic Pancreatitis: A Case Report (만성췌장염 환자에서 생긴 편평세포암종의 영상의학적 소견: 증례 보고)

  • Kim, Jong-Bum;Kim, Mi-Young;Suh, Chang-Hae;Lee, Kun-Young;Joo, Young-Chae;Cho, Jae-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.160-164
    • /
    • 2011
  • Squamous cell carcinoma of the pancreas is a rare, uncommon tumor that is characterized by squamous metaplasia of the ductal columnar cells. We report the image findings of a rare case of the pancreatic squamous cell carcinoma associated with chronic pancreatitis.

Internal Quality Evaluation and Age Identification of Fresh Korean Ginseng using Magnetic Resonance Imaging (자기공명영상을 이용한 수삼의 내부 품질평가 및 연근판정)

  • 임종국;김철수;이승조;김성민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The purpose of this study is to characterize the internal physical properties of fresh Korean ginsengs (Panax ginseng C.A. Meyer) through a magnetic resonance imaging (MRI) technique. Current external visual inspection cannot determine internal quality of ginsengs successfully. Relaxation time constants, T$_1$ and T$_2$*, were obtained from a series of MR images. Calculated Ti values were varied with different physiological states of ginseng tissues. Internal imaging information was obtained nondestructively from fresh ginsengs. One- and two-dimensional image analyses were performed. One-dimensional image analysis showed a potential of age identification of ginsengs rapidly. Internal quality of normal and abnormal ginsengs was evaluated using two-dimensional MR images. Various types of internal defects such as internal cavity and rotten spot were visualized clearly. The MRI technique had a feasibility to detect internal defects of fresh ginsengs effectively.

Influence of Iodinated Magnetic Resonance Contrast Media and Isotope 99mTc on Changes of Computed Tomography Number

  • Kim, Sang-Beom;Lee, Jin-Hyeok;Ahn, Jae-Ouk;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.302-307
    • /
    • 2015
  • The purpose of the study was to identify how isotope and magnetic resonance imaging (MRI) contrast media impact on noise to computed tomography (CT) examination. For the study, divide the phantoms to two groups: 1) saline, saline + different kinds of contrast agent without $^{99m}Tc$ administration; 2) $^{99m}Tc$ administration: saline, saline + different kinds of contrast agent with $^{99m}Tc$ administration. CT contrast agent was used for Iopamidol$^{(R)}$ and Dotarem. And MRI contrast agent was used for Primovist$^{(R)}$ and Gadovist$^{(R)}$. To obtain an image, we used CT scanner. With an obtained image, we set the $1cm^2$ region of interest in the middle of bottle to measure the noise and CT number. As a result, there was no difference in CT number before and after inserting $^{99m}Tc$ into all contrast media including Normal Saline. However, when it comes to Noise, there was a difference before and after inserting $^{99m}Tc$ into every contrast media except MRI contrast media such as Primovist$^{(R)}$ and Gadovist$^{(R)}$.

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.