• Title/Summary/Keyword: magnetic resonance image

Search Result 944, Processing Time 0.022 seconds

Hypointensity on Susceptibility-Weighted Images Prior to Signal Change on Diffusion-Weighted Images in a Hyperacute Ischemic Infarction: a Case Study

  • Kim, Dajung;Lee, Hyeonbin;Jung, Jin-Man;Lee, Young Hen;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • Susceptibility-weighted imaging (SWI) is well known for detecting the presence of hemorrhagic transformation, microbleeds and the susceptibility of vessel signs in acute ischemic stroke. But in some cases, it can provide the tissue perfusion state as well. We describe a case of a patient with hyperacute ischemic infarction that had a slightly hypodense, patchy lesion at the left thalamus on the initial SWI, with a left proximal posterior cerebral artery occlusion on a magnetic resonance (MR) angiography and delayed time-to-peak on an MR perfusion performed two hours after symptom onset. No obvious abnormal signals at any intensity were found on the initial diffusion-weighted imaging (DWI). On a follow-up MR image (MRI), an acute ischemic infarction was seen on DWI, which is the same location as the lesion on SWI. The hypointensity on the initial SWI reflects the susceptibility artifact caused by an increased deoxyhemoglobin in the affected tissue and vessels, which reflects the hypoperfusion state due to decreasing arterial flow. It precedes the signal change on DWI that reflects a cytotoxic edema. This case highlights that, in some hyperacute stages of ischemic stroke, hypointensity on an SWI may be a finding before the hyperintensity is seen on a DWI.

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging

  • Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.220-226
    • /
    • 2017
  • SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Early Diagnosis of Aseptic Meningitis in Ramsay Hunt Syndrome on 10-Minute Delayed CE 3D FLAIR Image: a Case Report

  • Kang, Mi Hyun;Kim, Da Mi;Lee, In Ho;Song, Chang June
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.197-200
    • /
    • 2021
  • Ramsay Hunt syndrome (RHS) is a disease caused by varicella-zoster virus (VZV) infection that can be diagnosed through clinical symptoms with or without imaging evaluations. The typical features of RHS on imaging evaluation include signal changes and enhancement in the internal auditory canal (IAC) nerves, and the labyrinthine segment of cranial nerve VII (CN VII) and cranial nerve VIII (CN VIII). In some patients, inner ear structure (cochlear and vestibular apparatus) is involved in RHS. Neurologic complications, such as encephalitis and meningitis, are rare in RHS, but are known to occur. Therefore, magnetic resonance imaging (MRI) is necessary to detect both abnormal signal intensity in the IAC, CN VII, CN VIII, inner and ear structure, and CNS complications. We report an RHS patient with CN VII, VIII, and leptomeningeal enhancement within the cerebellar folia on 10-min delayed, contrast-enhanced (CE), three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) imaging.

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Ultrasonographic and Magnetic Resonance Imaging Findings of Testicular Lymphoma (고환림프종의 초음파검사 및 자기공명영상 소견)

  • Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.27 no.2
    • /
    • pp.105-112
    • /
    • 2010
  • Purpose : To evaluate the specific radiologic findings of testicular lymphoma which will be able to differentiated from other testicular tumors. Materials and Methods : Pathologically confirmed eight cases were included in this study. All eight cases were performed ultrasonography and four cases were performed magnetic resonance image. On ultrasonography, the size, location, shape, margin, internal echogenicity, homogeneity and vascularity were evaluated. On magnetic resonance image, the shape, margin, homogeneity, signal intensity on T1- and T2-weighted images, degree and homogeneity of the contrast enhancement and contrast enhancement change on dynamic enhancement study. Results : The margin of the mass was smooth on 6 of 8 patients. Internal echogenicity of the mass lesion was hypoechoic than normal testicular parenchyme on 7 of 8 patients. Four cases were homogeneous, 3 cases were relatively homogeneous and 1 case was heterogeneous. All 8 cases showed increased vascularity. The mass lesion was iso-signal intensity on T1-weighted image and low-signal intensity on T2-weighted image. All four cases were enhanced homogeneously and mildly than enhancing normal testicular parenchyme. On dynamic enhancement study, the mass lesion is progressively enhanced with time. Conclusion : The possibility of testicular lymphoma should be considered when testicular mass was homogeneously hypoechoic and low signal intensity on T2-weighted image in old age patients.

  • PDF

Magnetic resonance image-based tomotherapy planning for prostate cancer

  • Jung, Sang Hoon;Kim, Jinsung;Chung, Yoonsun;Keserci, Bilgin;Pyo, Hongryull;Park, Hee Chul;Park, Won
    • Radiation Oncology Journal
    • /
    • v.38 no.1
    • /
    • pp.52-59
    • /
    • 2020
  • Purpose: To evaluate and compare the feasibilities of magnetic resonance (MR) image-based planning using synthetic computed tomography (sCT) versus CT (pCT)-based planning in helical tomotherapy for prostate cancer. Materials and Methods: A retrospective evaluation was performed in 16 patients with prostate cancer who had been treated with helical tomotherapy. MR images were acquired using a dedicated therapy sequence; sCT images were generated using magnetic resonance for calculating attenuation (MRCAT). The three-dimensional dose distribution according to sCT was recalculated using a previously optimized plan and was compared with the doses calculated using pCT. Results: The mean planning target volume doses calculated by sCT and pCT differed by 0.65% ± 1.11% (p = 0.03). Three-dimensional gamma analysis at a 2%/2 mm dose difference/distance to agreement yielded a pass rate of 0.976 (range, 0.658 to 0.986). Conclusion: The dose distribution results obtained using tomotherapy from MR-only simulations were in good agreement with the dose distribution results from simulation CT, with mean dose differences of less than 1% for target volume and normal organs in patients with prostate cancer.

The Retrospective Study on the Correlation between the Multifidus Muscle Atrophy on Low Back Pain Patients and the Magnetic Resonance Images (자기공명영상 (Magnetic Resonance Image)을 통한 요통 환자의 다열근 위축에 대한 후향적 연구)

  • Lee, Kil-Joon;Park, Young-Hoi;Keum, Dong-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.4
    • /
    • pp.151-163
    • /
    • 2009
  • Objectives : In the assessment of the lumbar spine by magnetic resonance imaging (hereinafter, "MRI"), changes in the paraspinal muscles are overlooked. The purpose of our study is to examine the correlation between the multifidus muscle atrophy on MRI findings and the clinical findings in low back pain (hereinafter, "LBP") patients. Methods : The retrospective study on 38 LBP patients, presenting either with or without associated leg pains, was undertaken. The MRI findings on the patients were visually analysed to find out a lumbar multifidus muscle atrophy, disc herniation, disc degeneration, spinal stenosis and nerve root compressions. The clinical history in each case was obtained from their case notes and pain drawing charts. Results : The lumbar multifidus muscle atrophy has occurred from more than 80% of the patients with LBP. Most of lumbar multifidus muscle atrophies have increased from lower level of lumbar spine. It was bilateral in the majority of the cases. In addition, multifidus muscle atrophy was correlated to the patient's age, disc degenerations and spinal stenosis. On the contrary, gender, the duration of LBP, referred leg pain, disc herniation and nerve root compressions had no relevance to multifidus muscle atrophies. Therefore, when assessing the MRIs of the lumbar spine, we should have more attetion on multifidus muscle, because it has lot's of information about spinal neuropathy problems. Conclusions : Therefore, the examination of multifidus muscle atrophies should be considered when assessing the MRIs of the lumbar spine. In addition, it helps to evaluate and plan the treatment modalities of LBP. Moreover, it prevents from LBP by discovering the importance between the multifidus muscle and the spine stabilization exercise.

Evaluation of Knee Joint after Double-Bundle ACL Reconstruction with Three-Dimensional Isotropic MRI

  • Jung, Min ju;Jeong, Yu Mi;Lee, Beom Goo;Sim, Jae Ang;Choi, Hye-Young;Kim, Jeong Ho;Lee, Sheen-Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.95-104
    • /
    • 2016
  • Purpose: To evaluate the knee joint after double-bundle anterior cruciate ligament (ACL) reconstruction with three-dimensional (3D) isotropic magnetic resonance (MR) image, and to directly compare the ACL graft findings on 3D MR with the clinical results. Materials and Methods: From January 2009 to December 2014, we retrospectively reviewed MRIs of 39 patients who had reconstructed ACL with double bundle technique. The subjects were examined using 3D isotropic proton-density sequence and routine two-dimensional (2D) sequence on 3.0T scanner. The MR images were qualitatively evaluated for the intraarticular curvature, graft tear, bony impingement, intraosseous tunnel cyst, and synovitis of anteromedial and posterolateral bundles (AMB, PLB). In addition anterior tibial translation, PCL angle, PCL ratio were quantitatively measured. KT arthrometric values were reviewed for anterior tibial translation as positive or negative. The second look arthroscopy results including tear and laxity were reviewed. Results: Significant correlations were found between an AMB tear on 3D-isotropic proton density MR images and arthroscopic proven AMB tear or laxity (P < 0.05). Also, a significant correlation was observed between increased PCL ratio on 3D isotropic MRI and the arthroscopic findings such as tear, laxities of grafts (P < 0.05). KT arthrometric results were found to be significantly correlated with AMB tears (P < 0.05) and tibial tunnel cysts (P < 0.05). Conclusion: An AMB tear on 3D-isotropic MRI was correlated with arthroscopic results qualitatively and quantitatively. 3D isotropic MRI findings can aid the evaluation of ACL grafts after double bundle reconstruction.

Vasogenic Edema in Experimental Cerebral Fat Embolism

  • Park Byung-Rae;Koo Bong-Oh
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • To evaluate the magnetic resonance imaging and electron microscopic findings of the hyperacute stage of cerebral fat embolism in cats and the time needed for the development of vasogenic edema. Magnetic resonance imaging was performed at 30 minutes (group 1, n=9) and at 30 minutes and 1, 2, 4, and 6 hours after embolization with triolein (group 2, n= 10). As a control for group 2, the same acquisition was obtained after embolization with polyvinyl alcohol particles (group 3, n=5). Electron microscopic examination was done in all cats. In group 1, the lesions were iso- or slightly hyperintense on T2-weighted (T2W) and diffusion-weighted (DWIs) images, hypointense on the apparent diffusion coefficient (ADC) map image, and markedly enhanced on the gadolinium-enhanced T1-weighted images (Gd-T1WIs). In group 2 at 30 minutes, the lesions were similar to those in group 1. Thereafter, the lesions became more hyperintense on T2WIs and DWIs and more hypoinfense on the ADC map image. In group 3, the lesions showed mild hyperintensity on T2WIs at 6 hours but hypointensity on the ADC map image from 30 minutes, with a tendency toward a greater decrease over time. Electron microscopic findings revealed discontinuity of the capillary endothelial wall, perivascular and interstitial edema, and swelling of glial and neuronal cells in groups 1 and 2. The lesions were hyperintense on T2WIs and DWIs, hypointense on the ADC map image, and enhanced on Gd-T1WIs. On electron microscopy, the lesions showed cytotoxic and vasogenic edema with disruption of the blood-brain barrier.

  • PDF