• 제목/요약/키워드: magnetic pulse forming

검색결과 22건 처리시간 0.019초

Bar 성형 코일을 이용한 전자기 성형에 관한 기초 연구 (A Fundamental Study on Magnetic Pulse Forming with Bar Forming Coil)

  • 심지연;강봉용;박동환;김일수
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.292-297
    • /
    • 2011
  • MPF(Magnetic pulse forming) process refers to the high velocity and high strain rate deformation of a low-ductility materials driven by electromagnetic forces that are generated by the rapid discharge current through forming coil. The goal of this study was to find the characteristics of dynamic behavior of workpiece and to find the main design process on MPF using bar forming coil. For these purposes, thin Al5053 sheet were used for the experiment. The measured strain data were analyzed by developed electromagnetic FE-model. The main design parameter is location of coil, electromagnetic force. In case of the bar forming coil, there exists the dead regions where the low electromagnetic force applied on the workpiece.

자기 펄스 성형장치의 성형력에 영향을 미치는 설계 파라미터에 관한 연구 (Study on Design Parameters that Affect the Forming Force of the Magnetic Pulse Forming Device)

  • 이만기;이화조;김진호
    • 한국자기학회지
    • /
    • 제25권3호
    • /
    • pp.79-82
    • /
    • 2015
  • 자기 펄스 성형장치란, 고강도 자기장을 이용하는 소성가공법이다. 자기 펄스 설형장치는 기존의 프레스 공정에 비해 가공 후 성형품의 표면 품질이 좋고 공정이 단순하며 가공속도가 높아 가공시간이 매우 짧은 장점을 가지고 있다. 본 연구에서는 자기 펄스 성형장치의 각각 변수들이 성형력에 미치는 영향력을 분석하기 위해 파라미터 연구를 수행하였다. 자기 펄스 성형장치의 각각 변수들은 인가전압, 캐패시터 용량, 코일의 턴 수로 나누어 지며, 각각의 변수들이 성형압력에 미치는 영향력을 분석하는데 상용전자기 해석 프로그램인 MAXWELL을 이용하였다.

펄스포밍의 스위칭 제어기술을 적용한 경두개 자기자극장치 (Pulse forming's switching control adopted a Transcranial Magnetic Stimulation Biomedical engineering, Dongju College University)

  • 김휘영
    • 한국정보통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.729-736
    • /
    • 2010
  • 본 연구에서는, 펄스포밍 제어기술과 펄스 성형을 가지는 자기 자극장치에 대해 언급 하고자 한다. 자기자극장치는 5-100초 사이에 펄스성형 기술적용과 순간적 방전코일 전류 6kA까지 상승되므로 스너버 회로를 가지는 IGBT 전력소자를 사용하였다. 57-67%의 열손실을 줄였고, 2-34%의 적은 에너지를 사용한 유도전계펄스로 전형적인 코사인 펄스와 매칭 되는것을 알수가 있었다. 자기자극장치는 펄스성형하는 기술 증가와 함께 한계 펄스진폭의 예측 되는 감소인 20-100초 사이에서 펄스성형 기술을 운동신경에 활발한 자극하기 위하여 사용된다. 자기 자극장치 프로트 타입에서 이용된 기초과학 기술에 의하여 기능을 확장할 수 있고, 전력소비를 줄일 수 있었고, 자기자극장치의 열손실에 대해서도 축소할 수가 있어, 더 나은 연구와 치료에 통해 응용할 수가 있다.

자기 펄스 발생기의 연결 도체 설계에 관한 연구 (A Study on the Design of Branch Conductor in the Magnetic Pulse Generator)

  • 서주하
    • 산업기술연구
    • /
    • 제9권
    • /
    • pp.101-107
    • /
    • 1989
  • The magnetic forming system must be able to store very important electric energy, several tens kilojoules, and flow this energy through the forming coil within some hundreds microseconds. So several hundreds kiloamperes of current can flow through the branch conductor. For the good performance of this type of machine, internal impedance must be minimized. By the computation of distribution of current inside the conductors using integral equation method, we can obtain the inductance and resistance of some dispositions of branch conductors and by comparison obtain some principles for the design of branch conductors in the high power magnetic pulse generator.

  • PDF

3 Stage 2 Switch Application for Transcranial Magnetic Stimulation

  • Ha, Dong-Ho;Kim, Whi-Young;Choi, Sun-Seob
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.234-239
    • /
    • 2011
  • Transcranial magnetic stimulation utilizes the method of controlling applied time and changing pulse by output pulse through power density control for diagnosis purposes. Transcranial magnetic stimulation can also be used in cases where diagnosis and treatment are difficult since output pulse shape can be changed. As intensity, pulse range, and pulse shape of the stimulation pulse must be changed according to lesion, the existing sine wave-shaped stimulation treatment pulse poses limitations in achieving various treatments and diagnosis. This study actualized a new method of transcranial magnetic stimulation that applies a 3 Stage 2 Switch( power semiconductor 2EA) for controlling pulse repetition rate by achieving numerous switching control of stimulation coil. Intensity, pulse range, and pulse shape of output can be freely changed to transform various treatment pulses in order to overcome limitations in stimulation treatment presented by the previous sine wave pulse shape. The method of freely changing pulse range by using 3 Stage 2 Switch discharge method is proposed. Pulse shape, composed of various pulse ranges, was created by grafting PFN (Pulsed Forming Network) through AVR AT80S8535 one-chip microprocessor technology, and application in transcranial magnetic stimulation was achieved to study the output characteristics of stimulation treatment pulse according to delaying time of the trigger signal applied in section switch.

전자기 성형에서의 테이퍼진 지속집중기의 자기압력에 관한 연구

  • 최재찬;조용철;이종수;황운석;김남환
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.14-27
    • /
    • 1990
  • Electromagnetic Pulse Forming is the one of the high velocity forming method. When the electric energy which is charged in the capacitor bank is suddenly discharged into the electromagnetic coil, the high magnetic field occurs at the airgap between the electromagnetic coil and workpiece. Thus we can obtain the high electromagnetic pressure, which is proportional to the square of magnetic flux density. This is the basic principle of the electromagnetic pulse forming. In this paper, the equivalent L-R-C circuit is derived by computing the magnetic field and its loss of the total system. Thus, the values of the magnetic flux density and pressure can be obtained from the equation of this circuit. As a result, the computed and measured values of the maximum magnetic flux density and pressure are compared and the characteristics of the tapered field shaper are further discussed as follows; 1) The strength of magnetic flux density and pressure can be controlled by the charged energy and the size of the airgap between the inner field shaper and the workpiece. 2) During the design of the tapered field shaper, the penetration of the magnetic flux through the sharp edge should be considered.

  • PDF

신경계 치료를 위한 루프 프로브형 자기자극기의 시뮬레이터 (The simulator loop probe style magnetic stimulation design for a nervous system treatment)

  • 김휘영
    • 디지털산업정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.29-37
    • /
    • 2009
  • It is as result that study to apply mini magnet nerve curer in peripheral nervous system disease treatment. Simulator and embodied action power and Control Unit in cylinder form of magnet roof object firstly. Yielded service area about special quality of probe of loop object cylinder style and treatment area dimension and distance of treatment pulse secondly. Embody pulse forming course energy value by Probe's form by third, could embody treatment pulse by disease. Specially, through a special quality experiment, saved Damping pulse form and treatment digital forming etc. variously. Lately, embodied this to aid a little in disease treatment that follow that there is no invasion that there is no stimulation by medicine development. Neuralgia, muscular disease and Altzheimer, with stroke etc. is becoming the matter of concern and interest which disease of adult etc. it is same is important. And the melancholia in compliance with the modern direction of a ceremony which is complicated and garrulous, trillion it will cry and symptoms, it is a tendency where the emotional obstacle etc. nervous psychiatric disorder patient is increasing at class speed. But currently the applicator it will be able to treat like this disease almost it is a condition which is wholly lacking. Consequently like this disease it used magnetic stimulation and it diagnosed and the equipment it will be able to treat plan and it embodied.

Full Wave Cockroft Walton Application for Transcranial Magnetic Stimulation

  • Choi, Sun-Seob;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.246-252
    • /
    • 2011
  • A high-voltage power supply has been built for activation of the brain via stimulation using a Full Wave Cockroft-Walton Circuit (FWCW). A resonant half-bridge inverter was applied (with half plus/half minus DC voltage) through a bidirectional power transistor to a magnetic stimulation device with the capability of producing a variety of pulse forms. The energy obtained from the previous stage runs the transformer and FW-CW, and the current pulse coming from the pulse-forming circuit is transmitted to a stimulation coil device. In addition, the residual energy in each circuit will again generate stimulation pulses through the transformer. In particular, the bidirectional device modifies the control mode of the stimulation coil to which the current that exceeds the rated current is applied, consequently controlling the output voltage as a constant current mode. Since a serial resonant half-bridge has less switching loss and is able to reduce parasitic capacitance, a device, which can simultaneously change the charging voltage of the energy-storage condenser and the pulse repetition rate, could be implemented. Image processing of the brain activity was implemented using a graphical user interface (GUI) through a data mining technique (data mining) after measuring the vital signs separated from the frequencies of EEG and ECG spectra obtained from the pulse stimulation using a 90S8535 chip (AMTEL Corporation).

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

전자기력을 이용한 박판 성형공정의 해석적 연구 (Numerical Simulation of Thin Sheet Metal Forming Process using Electromagnetic Force)

  • 서영호;허성찬;구태완;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.35-45
    • /
    • 2008
  • Electromagnetic Forming (EMF) technology such as magnetic pulse forming, which is one of the high velocity forming methods, has been used for the joining and forming process in various industry fields. This method could be derived a series of deformation of sheet metal by using a strong magnetic field. In this study, numerical approach by finite element simulation of the electromagnetic forming process was presented. A transient electromagnetic finite element code was used to obtain the numerical model of the time-varying currents that are discharged through the coil in order to obtain the transient magnetic forces. Also, the body forces generated in electromagnetic field were used as the loading condition to analyze deformation of thin sheet metal workpiece using explicit dynamic finite element code. In this study, after finite element analysis for thin sheet metal forming process with free surface configuration was performed, analytical approach for a dimpled shape by using EMF was carried out. Furthermore, the simulated results of the dimpled shape by EMF were compared with that by a conventional solid tool in view of the deformed shape. From the results of finite element analysis, it is confirmed that the EMF process could be applied to thin sheet metal forming.