• Title/Summary/Keyword: magnetic powder

Search Result 778, Processing Time 0.042 seconds

THE ALIGNMENT OF SR-FERRITE POWDERS AND MAGNETIC PROPERTIES IN FABRICATION OF MULTI-POLE ANISOTROPIC SINTERED SR-FERRITES BY POWDER INJECTION MOLDING

  • Cho, T.S.;Park, B.S.;Jeung, W.Y.;Moon, T.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.740-744
    • /
    • 1995
  • For the fabrication of a multi-pole anisotropic Sr-ferrite magnet by powder injection molding, it is important to control effectively the alignment of magnetic powders during the injection molding process. The effect of the fluidity of powder/binder mixture on the powder alignment was studied with changing the particle sizes and the volume fraction of Sr-ferrite magnetic powders. The critical volume fraction of Sr-ferrite powders increases from 58 vol.% to 64 vol.% as the mean powder size increases from $0.8\;\mu\textrm{m}$ to $1.2\;\mu\textrm{m}$. A Sr-ferrite powder alignment greater than 80 % is achieved at the conditions of an apparent viscosity lower than 1000 poise at $1600\;sec^{-1}$ shear rate, an applied magnetic field higher than 4 kOe, and a powder volume fraction 8 vol.% lower than the critical fraction. The powder alignment obtained during the injection molding process is not much affected by the subsequent processes of debinding and sintering, showing the magnetic properties of 3.8 kG of remanent flux density and 3.37 kOe of intrinsic coercivity.

  • PDF

Analysis of the Performance of Magnetic Abrasive Deburring according to Powder Characteristics (분말 특성에 따른 자기연마에 의한 Deburring성능분석)

  • Chae Jong-Won;Ko Sung-Lim;Baron Yuri M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.37-43
    • /
    • 2004
  • The performance of magnetic abrasive finishing fur surface is evaluated by the characteristic curve. The characteristic curve is generated by experiment in surface finishing. For experiment, new magnetic inductor is designed and manufactured. 15 kinds of powders are provided to find the relationship between powder characteristic and finishing performance. As powder, Fe-TiC. Polymer-TiC and Fe-NbC are used with different size. The size of abrasives and location are also important factor for the performance. From characteristic curve, two index are obtained, which specify the initial finishing performance and endurance of finishing performance. It is proved that the performance index can be applied to select proper powder for efficient deburring. It is shown that the characteristic curve can be used as good tools for evaluating powder performance in surface finishing and deburring.

A Study for measuring the Intial Permeability of Soft-Ferrite Powder by Using Differential Transformer Coil (차동트랜스 코일을 이용한 Soft-Ferrite 분말의 초투자율측정에 관한 연구)

  • Jun, Hong-Bae;Heo, Jin;Kim, Chul-Han;SaGong, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.68-71
    • /
    • 2000
  • In this study, A set-up for measuring a initial permeability of soft-ferrite powder was developed with a differential transformer coil. To measure a initial permeability of magnetic powder is cumbersome since there are not any measuring equipment and method. A magnetic powder is currently used for a magnetic fluid and microwave absorber materials, and the initial permeability of the magnetic powders is very important to be evaluated a powder for some applications.

  • PDF

Magnetic Powder and Nano-powder Composites for Electrical Converters

  • Mazurkiewicz, Marian;Rhee, Chang-Kyu;Weglinski, Bogumil
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.320-330
    • /
    • 2008
  • On the base of experience in development of Magnetic Powder Composites, and particularly Soft Magnetic Composites, authors are trying to systematize classification and indicate possible development prospective of Magnetic Nanocomposites (MN) technology and their applications in electrical converters. Clear classification and systematization, at an early stage of any materials and technology development, are essential and lead for better understanding and communication between researchers and industry involved. This concern MN as well and it seems to be the right time to make it at present stage of their development. Presented proposal of classification distinguishes various types of MN by their magnetic properties and area of possible applications. It is not a close set of types, and can be extended due to increase of knowledge concern these nanocomposites.

Superconducting high gradient magnetic separation for magnetic substance at sludge powder of hot rolled coolant

  • Kwon, Jun-Mo;Ha, Dong-Woo;Kim, Tae-Hyung;Cho, Mun-Dak;Choi, Woo-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.353-353
    • /
    • 2009
  • It is an important task to construct a recycling society with a low damage on the environment in our century. Magnetic separation is expected to be applied for the industrial waste treatment as an important supporting technology. In the magnetic separation of dry condition, the cohesive force between particles is strong compared with that in the wet condition's magnetic separation. The use of high magnetic field by the superconducting magnet enhances the powder's magnetic substance capture ability of the magnetic separation. In this study, the POSCO's coolant sludge of hot rolled steel was used for the superconducting magnetic separation of dry condition. Cryo-cooled NB-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator.

  • PDF

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Synthesis of $Fe_4N$ Powder and Its Magnetic Properties for Magnetic Recording (자기기록용 $Fe_4N$ 분말의 합성 및 자기특성)

  • 변태봉;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.2
    • /
    • pp.93-100
    • /
    • 1991
  • For determination the optimum manufacturing condition Fe4N powder for magnetic recording media, we have studied the following important conditions : the effect of particle size of metal powder on the nitridation, the condition of nitridation on the formation and magnetic properties of Fe4N, and stability of Fe4N powder against temperature and change on standing. The results can be summarized as : 1) Single phase Fe4N is formed at 50v/o of ammonia concentration during the nitridation reaction, 2) Single phase Fe4N is formed above 40$0^{\circ}C$, 15min regardless of the metal powder sizes, 3) Coercivity and saturation magnetization of Fe4N powder almost constant value until 20 day-passing from preparation date.

  • PDF

Development of Powdered Soft Magnetic Material Suitable for Electric Devices Operating at High Frequencies

  • Ishimine, Tomoyuki;Maeda, Toru;Toyoda, Haruhisa;Mimura, Kouji;Nishioka, Takao;Sugimoto, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.802-803
    • /
    • 2006
  • Recently, there has been a growing demand for soft magnetic materials with high conversion characteristics, due to the trend of electric devices to higher-frequency range. For ruduceing core loss in the high-frequency range, using finely grained and high-resistivity Fe-based alloy powder is most efficient methods. But, conventionally, there's been a compressibility problem for such powder. In this work, Fe-based alloy powder that offers both high resistivity and high compressibility was developed by studyuing composition of the powder, and reduction of core loss of P/M soft magnetic materials in the high frequency range was achieved.

  • PDF

Warm Compaction of Fe-Si/Fe Powder Mixture and its Magnetic Property (Fe-Si/Fe 혼합분말의 온간성형 및 자성특성)

  • Kim, Se-Hoon;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.249-253
    • /
    • 2009
  • 3-D shape soft magnetic composite parts can be formed by general compaction method of powder metallurgy. In this study, the results on the high density nanostructured Fe-Si/Fe composite prepared by a warm compaction method were presented. Ball-milled Fe-25 wt.%Si powder, pure Fe powder and Si-polymer were mixed and then the powder mixture was compacted at various temperatures and pressures. Pore free density of samples up to 95% theoretical value has been obtained. The warm compacted sample prepared at 650 MPa and 240$^{\circ}C$ had highest compaction properties in comparison with other compacts prepared at 300, 400 MPa and room temperature and 120$^{\circ}C$. The magnetic properties such as core loss, magnetization saturation and coercivity were measured by B-H curve analyzer and vibration sample magnetometer.