• Title/Summary/Keyword: magnetic oxide

Search Result 513, Processing Time 0.021 seconds

Development of Superparamagnetic Iron Oxide Nanoparticles (SPIOs)-Embedded Chitosan Microspheres for Magnetic Resonance (MR)-Traceable Embolotherapy

  • Kang, Myung-Joo;Oh, Il-Young;Choi, Byung-Chul;Kwak, Byung-Kook;Lee, Jae-Hwi;Choi, Young-Wook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.98-103
    • /
    • 2009
  • Superparamagnetic iron oxide nanoparticles (SPIOs)-embedded chitosan microspheres were developed for magnetic resonance (MR)-traceable embolotherapy. SPIOs-loaded chitosan microspheres were prepared by emulsion and cross-linking technique and 100-200 ${\mu}m$ sized spherical microsparticles were obtained. Loading efficacy and loading amount of SPIOs in microspheres were about 40% and 0.26-0.32%, respectively, when measured by inductively coupled plasma atomic emission spectroscopy. Within 30 days, about 60% of the incorporated SPIOs were released from low cross-linked microspheres, whereas only about 40% of SPIOs was released from highly cross-linked microspheres. Highly cross-linked microspheres were more efficient for lower degree of swelling leading to secure entrapment of SPIOs in matrix. Prepared novel embolic microspheres are expected to be practically applicable for traceable embolotherapy with high resolution and sensitivity through magnetic resonance imaging (MRI).

Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field

  • Ebrahimi, Farzad;Nouraei, Mostafa;Dabbagh, Ali;Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.351-361
    • /
    • 2019
  • Present article deals with the static stability analysis of compositionally graded nanocomposite beams reinforced with graphene oxide powder (GOP) is undertaken once the beam is subjected to an induced force caused by nonuniform magnetic field. The homogenized material properties of the constituent material are approximated through Halpin-Tsai micromechanical scheme. Three distribution types of GOPs are considered, namely uniform, X and O. Also, a higher-order refined beam model is incorporated with the dynamic form of the virtual work's principle to derive the partial differential motion equations of the problem. The governing equations are solved via Galerkin's method. The introduced mathematical model is numerically validated presenting a comparison between the results of present work with responses obtained from previous articles. New results for the buckling load of GOP reinforced nanocomposites are presented regarding for different values of magnetic field intensity. Besides, other investigations are performed to show the impacts of other variants, such as slenderness ratio, boundary condition, distribution type and so on, on the critical stability limit of beams made from nanocomposites.

The effect of laser energy on the preparation of iron oxide by a pulsed laser ablation in ethanol

  • Maneeratanasarn, P.;Khai, T.V.;Choi, B.G.;Shim, K.B.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.134-138
    • /
    • 2012
  • Recently the preparation magnetic nanoparticles by a pulsed laser ablation in liquid has gained much attention because it is easy to control experimental parameters. Iron oxide magnetic nanoparticles have been prepared by a pulsed laser ablation of ${\alpha}-Fe_2O_3$ target in ethanol at different magnitude of laser energy of 1, 20, 40 and 80 mJ/pulse. It revealed that particle size increases with increasing laser energy. It could be concluded that 40 mJ/pulse is an optimum laser energy for the preparation of iron oxide nanoparticles with uniform size distribution. The nanoparticles are homogeneously dispersed in ethanol and their stability maintained for several months.

The Oxide Coating Effects on the Magnetic Properties of Amorphous Alloys

  • 배영제;Jang, Ho G.;Chae, Hee K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.7
    • /
    • pp.621-625
    • /
    • 1996
  • A variety of metal oxides were coated by sol-gel process from their metal alkoxides on the ribbons of Co-based and Fe-based amorphous alloys, and the effects of surface oxide coating on the magnetic properties of the alloy are investigated. The core loss is found to be reduced significantly by the oxide coating, the loss reduction becoming more prominent at higher frequencies. The shape of the hystersis loop is also dependent upon the kind of the coated metal oxide. The coatings of MgO, SiO2, MgO·SiO2 and MgO·Al2O3 induce tensile stress into the Fe-based ribbon whereas those of BaO, Al2O3, CaO·Al2O3, SrO·Al2O3 and BaO·Al2O3 induce compressive stress. These results may be explained by the modification of domain structures via magnetoelastic interactions with the shrinkage stress induced by the sol-gel coating.

Magnetic Field Dependence of Brownian Motion in Iron-oxide Nanoparticles (산화철 나노입자의 브라운 운동에 대한 자기장 의존성 연구)

  • Jung, Eun Kyung;Yoon, Seok Soo;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • The ac magnetic susceptibility was measured in iron-oxide nanoparticles with average size of 26 nm, which were uniformly dispersed in organic solvent. The ac magnetic susceptibility measured under zero magnetic fields was well fitted with Debye relaxation model and the relaxation frequency was 370 Hz. The relaxation frequency of the nanoparticles coincided with relaxation time of the Brownian motion, which is due to the viscosity of the liquid medium in which magnetic nanoparticles dwell. The Brown relaxation frequencies were linearly increased with magnetic field.

Magnetic Tunnel Junctions with Magnesium Oxide Barriers

  • Nagahama Taro;Moodera Jagadeesh S.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.170-181
    • /
    • 2006
  • Spin dependent tunneling has enormously activated the field of magnetism in general, and in particular spin transport studies, in the past ten years. Thousands of articles related to the subject have appeared with many fundamental results. Importantly, there is great interest in their potential for application. There was another surge of activity in this field since the past five years - created by the theoretical prediction of a large tunnel magnetoresistance that arises due to band symmetry matched coherent tunneling in epitaxial magnetic tunnel junctions with (001) MgO barrier and experimentally well demonstrated. This further development in the field has boosted the excitement in both fundamental science as well as the possibility of application in such as magnetic random access memory, ultra sensitive read heads, biosensors and spin torque diodes. This review is a brief coverage of the field highlighting the literature that deals with magnetic tunnel junctions having epitaxial MgO tunnel barriers.

Magnetic Properties of Electrodeposited Iron and Cobalt on Porous Aluminum Oxide Layer (다공성 알루미늄 양극산화 피막에 도금된 철 및 코박트의 자기적 성질)

  • Kim, K. H.;Kang, T.;Sohn, H. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 1990
  • The magnetic properties of electrodeposited iron and cobalt films on porous aluminum oxide film were examined. There exists perpendicular magnetic anisotropy due to the shape anisotropy. The coercivity and squareness ratio of films were strongly dependent on deposited particle diameter. The effect of packing fraction on squareness ratio was also apprecible. Unlike the iron-deposited films, the magnetic properties of cobalt films were changed by preferred orientation because of it's large crystal ansotropy constant.(about 10 times of Fe) The Fe deposited films were found to be more suitable for perpendicular magenetic recording media bacause perpendicular coercivity, squareness ratio and the ratio of perpendicular coercivity to horizontal ones of iron films are greater than those of cobalt films.

  • PDF