• 제목/요약/키워드: magnetic ordering

검색결과 86건 처리시간 0.026초

Improvement of Magnetic Properties and Texture of FePt Thin Films on MgO Substrates by Sn Addition

  • Chun, Dong-Won;Kim, Sung-Man;Kim, Gyeung-Ho;Jeung, Won-Young
    • Journal of Magnetics
    • /
    • 제14권1호
    • /
    • pp.7-10
    • /
    • 2009
  • In this work, we studied the effects of Sn addition on the ordering temperature of FePt thin film. The coercivity of FePtSn film was about 1000 Oe greater than the coercivity of FePt film for an annealing temperature of $600^{\circ}C$. Therefore, Sn addition was effective in promoting the $L1_0$ ordering and in reducing the ordering temperature of the FePt film. From our X-ray diffraction results, we found that in the as-deposited film, the addition of Sn induced a lattice expansion in disordered FePt thin films. After the annealing process, the excess Sn diffuses out from the ordered FePt thin film because of the difference in the solid solubility of Sn between the disordered and ordered phases. The existence of precipitates of Sn from the FePt lattice was deduced by Curie temperature measurements of the FePt and FePtSn films. Therefore, the key role played by the addition of Sn to the FePt film can be explained by a reduction in the activation energy for the $L1_0$ order-disorder transformation of FePt which originates from the high internal stress in the disordered phase induced by the supersaturated Sn atoms.

Ferromagnetic Properties in Diluted Magnetic Semiconductors (Al,Mn)N grown by PEMBE

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.12-15
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

유화 Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$에서 Jahn - Teller Distortion에 의한 Mossbauer 공명 흡수선의 변화에 관한 연구 (The Mossbauer Spectra Changes Due to the Jahn-Teller Distortion in Sulphur Spinel $Co_{0.95}Fe_{0.05}Cr_2S_4$)

  • 서정철;이민용;고영복
    • 한국자기학회지
    • /
    • 제7권5호
    • /
    • pp.225-231
    • /
    • 1997
  • 유화 Spinel $Co_{0.95}$ F $e_{0.05}$C $r_{2}$ $S_{4}$에 대한 Mossbauer Spectrum을 자기적 전이온도 부근에서부터 액체 헬륨 온도까지 여러 온도 범위에 측정하였다. 사면체 자리에 놓여있는 F $e^{2+}$ 이온은 Jahn-Teller active로서의 역할을 하여 자기적 전이온도 이하에서부터 결정 구조상에 일그러짐을 유도하여 전기 4중극자를 형성하게된다. 초미세 자기장은 100 K 근방에서 최대 값을 갖고 온도가 감소할수록 급히 감소하는 현상을 보이고 있다. 전기 4중극자 상호작용과 자기 2중극자 상호작용 크기의 비 R은 자기적 전이온도에서 0의 값이었으나 온도가 내려감에 따라 증가하여 4.2 K 에서는 5.4의 값을 가지고 있다. 초미세 자기장의 방향과 최대 전기장 기울기 주축과의 각 .theta. 의 최적 값은 0이며 최대 전기장 기울기의 비 대칭성 매개변수 .eta. 는 0.25 근방임이 밝혀졌다. 이 경우의 Mossbauer spectra 컴퓨터 모사는 실험결과와 잘 일치하고 있다....

  • PDF

Magnetic resonance study on boron substituted amorphous FeZrMn alloys

  • A.N.Ulyanov;Tian, Sheng-Bo;Kim, Kyeong-Sup;V.Srinivas;Yu, Seong-Cho
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2003년도 하계학술연구발표회 및 한.일 공동심포지엄
    • /
    • pp.90-91
    • /
    • 2003
  • Amorphous magnetic materials with competing magnetic interactions are the subject of current interest. Critical behaviour studies have been performed in order to understand the nature of the phase transition at the Curie point (T$\sub$c/) and type of magnetic ordering below the T$\sub$c/. In some cases there exists a temperature interval in which the magnetic system consists of ferromagnetic grains separated by the paramagnetic interlayers. Magnetic properties of nanoparticles embedded in amorphous matrix also are the subject of recent interest. While these materials exhibit excellent soft magnetic properties at room temperature, some of them have been found to be superparamagnetic in the temperature range above the T$\sub$c/ of the matrix. Thus the role of different magnetic phases in the intergrain magnetic coupling can possibly be taken apart in a sufficiently broad temperature range and investigated separately. In particular materials with competing magnetic exchange interactions show characteristics of enhanced magnetoresistance and softer magnetic properties when magnetic nanocrystals are dispersed in amorphous matrix. We expect careful magnetic measurements in the vicinity of T$\sub$c/ would throw some light on magnetic behaviour of above materials. We present here the FMR analysis of Fe$\sub$82/Mn$\sub$8-x/B$\sub$x/Zr$\sub$10/ alloy near the Curie point.

  • PDF

THE ORDERING OF MAGNETIC FIELDS IN THE COSMOS

  • BIERMANN PETER L.;KRONBER PHILIPP P.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.527-531
    • /
    • 2004
  • It is argued that the key task in understanding magnetic fields in the cosmos is to comprehend the origin of their order or coherence over large length scales in galaxies. Obtaining magnetic fields can be done in stars, whose lifetime is usually $10^{10}$ rotations, while galactic disks have approximately 20 to 50 rotations in their lifetime since the last major merger, which established the present day gaseous disk. Disorder in the galactic magnetic fields is injected on the disk time scale of about 30 million years, about a tenth of the rotation period, so after one half rotation already it should become completely disordered. Therefore whatever mechanism Nature is using, it must compete with such a short time scale, to keep order in its house. This is the focal quest.

Precursor Process Designing to Synthesize Nano-sized Phosphors

  • Kim, Soo-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권1호
    • /
    • pp.26-29
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

Electronic Structure and Magnetic Moments of Copper-atom in/on GaN Semiconductor

  • Kang, Byung-Sub;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • 제15권2호
    • /
    • pp.51-55
    • /
    • 2010
  • The electronic and magnetic properties of Cu-doped GaN with a Cu concentration of 6.25% and 12.5% are examined theoretically using the full-potential linear muffin-tin orbital method. The magnetic moment of Cu atoms decreases with increasing Cu concentration. The spin-polarization of Cu atoms is reduced due to the Cu d-d interaction depending on the distance between the nearest neighbouring Cu atoms. Cu atoms exhibits a clustering tendency in GaN. For Cu-adsorbed GaN thin films with a surface coverage of 0.25, the ferromagnetic state is found to be the energetically favourable state with an induced magnetic moment of $0.54\;{\mu}_B$ per supercell.