• 제목/요약/키워드: magnetic nano powder

검색결과 123건 처리시간 0.034초

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Magnetic Pulsed Compaction(MPC)법으로 성형된 Cu 나노 분말 성형체의 미세구조 및 기계적 특성 (Nanostructures and Mechanical Properties of Copper Nano Powder Compacted by Magnetic Pulsed Compaction (MPC) Method)

  • 이근희;김민정;김경호;이창규;김흥회
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.124-132
    • /
    • 2002
  • Nano Cu powders, synthesized by Pulsed Wire Evaporation (PWE) method, have been compacted by Magnetic Pulsed Cojpaction(MPC) method. The microstructure and mechanical properties were analyzed. The optimal condition for proper mechanical properties with nanostructure was found. Both pure nano Cu powders and passivated nano Cu powders were compacted, and the effect of passivated layer on the mechanical properties was investigated. The compacts by MPC, which had ultra-fine and uniform nanostructure, showed higher density of 95% of theoretical density than that of static compaction. The pur and passivated Cu compacted at $300^{\circ}C$ exhibited maximum hardnesses of 248 and 260 Hv, respectively. The wear resistance of those compacts corresponded to the hardness.

Magnetic Properties of Amorphous FeSiB and Nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Soft Magnetic Sheets

  • Cho, H.J.;Cho, E.K.;Song, Y.S.;Kwon, S.K.;Sohn, K.Y.;Park, W.W.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.786-787
    • /
    • 2006
  • The magnetic inductance of nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy was about $88{\mu}H$ at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.

  • PDF

기계화학적 합금화된 나노 Fe-6.5Si 분말의 자기 펄스압에 의한 동적성형 (Dynamic Compaction of Mechanochemically Alloyed Fe-Si Nano Powders by Magnetic Pulsed Pressure)

  • 이근희;이창규;김흥회;윤종운;이기선
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.24-29
    • /
    • 2005
  • Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/$cm_3$) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/$cm_3$) by MPC at room temperature.

Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향 (Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores)

  • 조은경;조현정;권훈태;조은민;류혁현;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

The study to flat-type generate of magnetic field with CW (Continue wave) frequency and AM (Amplitude modulation) frequency

  • Shin, Gi Won;Kang, Chang Ho;Lee, Min Jun;Yang, Sung Jae;Lee, Hyuk Ho;Hong, Hyun Bin;Jo, Tae Hoon;Kwon, Gi Chung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.139.2-139.2
    • /
    • 2015
  • In this study, We applied the magnetic field that has CW frequency and AM frequency to heating magnetic nano powder. For this experiment, We set up the devices flat-type magnetic field generator with CW frequency and AM frequency. We supplied the current to encircling coil by adjusting the power of generating of magnetic field device for AC voltage through Slidacs and using way of LC resonance circuit and SMPS(Switching Mode Power Supply). Above the encircling coil, We covered the circular flat insulator like glass. And we located the well plate containing the magnetic nano powder liquor above the circular flat insulator and exposed the magnetic field to this well plate. Using the flat-type magnetic field generator with CW and AM frequency and the magnetic field measurement sensor(Magnetic pick up coil or Hall sensor), We measured the strength of the magnetic field of circular flat insulator's surface in each position. The temperature of the magnetic nano powder in the well plate was quantitatively measured by the magnetic field strength through the Fluoroptic thermometer.

  • PDF

자기펄스 성형법에 의한 TiO2 나노 분말의 치밀화 (Densification of TiO2 Nano Powder by Magnetic Pulsed Compaction)

  • 김효섭;이정구;이창규;구자명;홍순직
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.411-416
    • /
    • 2008
  • In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of $TiO_2$ bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and $TiO_2$ nano powder for the compaction of $TiO_2$ nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.

Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화 (The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes)

  • 김선이;김미래;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제16권6호
    • /
    • pp.424-430
    • /
    • 2009
  • Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.