• 제목/요약/키워드: magnetic mineral

Search Result 205, Processing Time 0.021 seconds

Development of the Magnetic Abrasive Using Worthless Mineral (폐광물을 이용한 자기 연마재 개발)

  • Kim, Hee-Nam;Kim, Dong-Wook
    • Journal of the Speleological Society of Korea
    • /
    • no.70
    • /
    • pp.45-50
    • /
    • 2006
  • The magnetic polishing is the useful method to finish using magnetic power of magnet. This method is one of precision polishing techniques and has an aim of the clean technology using for the pure of gas and inside of the clean pipe for transportation. The magnetic abrasive polishing method is not so common for machine that it is not spreaded widely. There are rarely researcher in this field because of non-effectiveness of magnetic abrasive. Therefore, in this paper deals with development of the magnetic abrasive using worthless mineral. In this development, abrasive grain WA and GC used to resin bond fabricated low temperature. And magnetic material was fabricated from the worthless mineral which were closed into 200 mesh grit type. The XRD analysis result show that only WA and GC abrasive and worthless mineral crystal peaks detected which explains resin bond was not any more chemical reaction. From SEM analysis it is found that WA and GC abrasive and worthless mineral were strong bonding with each other by bond.

Separation and Mineralogy of Marine Sand Near Haeju bay, North Korea (북한 해주만 부근 해사의 선별 및 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Soo-Jung;Kim, Wan-Tae;Lee, Chun-Oh;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.217-227
    • /
    • 2009
  • Heavy minerals in the marine sand near Haeju bay, Hwanghae-do, North Korea were separated using the gravity and the magnetic separators. And their mineralogical study was carried out. Ilmenite, magnetite, hematite, zircon and monazite were observed as the valuable minerals, and quartz, orthoclase, muscovite, hornblende and garnet existed as gangue minerals. In the result of quantitative analysis with SIROQUANT program, the contents of the valuable minerals separated with the 2nd gravity separation (the shaking table separation), the 1st magnetic separation (rare earth magnetic separation) and the 2nd magnetic separation (the Eddy current magnetic separation) were increased into 4%, 10% and 76~89% (under the condition of 7000 G and 10000 G in magnetic strength), respectively. The contents of ilmenite, monazite and zircon recalculated from the chemical composition differed from the results of the quantitative analyses by SIROQUANT program, but the entire tendency bears some analogy with it. Under the conditions of 7000 G and 10000 G in 2nd magnetic separation the contents of ilmenites were concentrated with 53% and 66%, respectively. The content of monazite was 1.2% in the magnetic fractions of the 1st magnetic separation. The content of zircon was shown 1.4% under the condition of 10000 G in the 2nd magnetic separation, and was displayed 9% in +50 mesh of non-magnetic fraction of 1st magnetic separation, especially.

Upgrading of Iron from Waste Copper Slag by A Physico-chemical Separation Process (Physico-chemical 분리 공정에 의한 폐동슬래그로부터 철의 품위향상)

  • Lee, Kwang-Seok;Jo, Seul-Ki;Shin, Doyun;Jeong, Soo-Bock;Lee, Jae-Chun;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.30-36
    • /
    • 2014
  • A large amount of waste copper slag containing about 35 ~ 45% iron has been generated and discarded every year from pyrometallurgical processes for producing copper from copper concentrate. Thus, recovery of iron from the waste copper slag is of great interest for comprehensive use of mineral resource and reduction of environment problems. In this study, a physico-chemical separation process for upgrading iron from the waste copper slag discharged as an industrial waste has been developed. The process first crushes the waste copper slag below 1 mm (first crushing step), followed by carbon reduction at $1225^{\circ}C$ for 90 min (carbon reduction step). And then, resulting material is again crushed to $-104{\mu}m$ (second crushing step), followed by wet magnetic separation (wet magnetic separation step). Using the developed process, a magnetic product containing more than 66 wt.% iron was obtained from the magnetic separation under a magnetic field strength of 0.2 T for the waste copper slag treated by the reduction reaction. At the same conditions, the percentage recovery of iron was over 72%. The iron rich magnetic product obtained should be used as a iron resource for making pig iron.

A Study on the Characteristics of W-Mo Ore Deposit in Bayan-Onjuul, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 바얀온줄 텅스텐-몰리브덴 광화대 특성 연구)

  • Park, Gyesoon;Lee, Bum Han;Kim, In-Joon;Heo, Chul-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.4
    • /
    • pp.202-208
    • /
    • 2014
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) and MRAM (Mineral Resources Authority of Mongolia) performed joint survey on Bayan-Onjuul W-Mo mineralized area. Following the survey, we carried out magnetic survey. W-Mo occurrences are located with keeping a certain distance from the northern boundary of granite which has higher magnetic susceptibility values. Also, the 3D imaging results of magnetic inversion show that granite bodies are extended to the W-Mo occurrence areas from the deep main body with decreasing of susceptibility. The results of magnetic data analysis are well matched with the general characteristics of ore solution involved with W mineralization. The further study about the hidden ore deposits which have similar spatial relationship between granite and known WMo occurrences are necessary to improve the economic feasibility.

Magnetic Data Analysis of the Chromium Mineralized Belt in Bophi Vum area, Northwestern Myanmar (미얀마 북서부 보피붐 크롬광화대의 자력 탐사자료 해석)

  • Park, Gyesoon;Heo, Chul-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.147-154
    • /
    • 2014
  • For analyzing the distribution of chromite, magnetic survey was carried out on the chromium mineralized belt in Bophi Vum area, northwestern Myanmar. As a result, the magnetic susceptibility of chromite is lower than those of dunite and harzburgite, which are background rocks of chromite. Also, the locations of low magnetic anomaly zone and low magnetic susceptibility models of 3D magnetic inversion result are spatially well matched with those of chromite occurrences confirmed by the surface geological survey and trench survey. Some of low magnetic effects are expanded to the periphery area of chromite occurrences. Considering the magnetic susceptibility characteristics of various rocks in this area, the expanded low magnetic anomaly zones are estimated as the high potential areas bearing chromite. For confirming the potential area of chromite pointed by coarse magnetic survey, the additional detail exploration need to be carried out in future.

The optimized recover process of heavy minerals from Korean beach-sand

  • Shin, Hee-Young;Jeon, Ho-Soek;Baik, Seung-Woo;Kim, Wan-Tae;Lee, Jae-Chun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.648-653
    • /
    • 2003
  • Optimized recovery of heavy minerals from the near shore sands of Korean Yellow Sea was investigated using physical processing technologies such as gravity concentration and magnetic separation. The head samples were subjected to the three stages effective separation; Head sample was first treated by a spiral separator to recover rough heavy mineral concentrates, which are contained minerals like ilmenite, zircon and rare earth minerals. Much higher beneficiation processes were subsequently taken by wilfley table and magnetic separation according to their magnetic field responses. Heavy minerals were effectively recovered by wilfley table and subsequent recleaning of heavy minerals by magnetic separations was conducted. Qualitative and relative-quantitative analyses of their constituent elements were doing using XRD and XRF.

  • PDF

Ferromagnetic Target Detection in the Ocean Using Drone-based Magnetic Anomaly Detection (드론 기반 자기 이상 탐지를 이용한 해양에서의 강자성 표적 탐지)

  • Sinhyuk Yim;Dongkyu Kim;Jihun Yoon;Eunseok Bang;Seokmin Oh;Bona Kim;Kyumin Shim;Sangkyung Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.338-345
    • /
    • 2024
  • Magnetic anomaly signals from the ferromagnetic targets such as ships in the sea are measured by drone-based magnetic anomaly detection. A quantum magnetometer is suspended from the drone by 4 strings. Flight altitude and speed of drone are 100 m and 5 m/s, respectively. We obtain magnetic anomaly signals of few nT from the ships clearly. We analyze the signal characteristics by the ferromagnetic target through simulation using COMSOL multiphysics.

The Magnetic Anomaly Map of Korea (한국의 자력 이상도)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. For this reason, the governments of many countries have made significant investment in the acquisition of airborne geophysical data over many decades. KIGAM (Korea Institute of Geoscience and Mineral Resources) began nationwide airborne magnetic mapping programme in 1982, and completed in 2017. The obtained magnetic data was reprocessed and magnetic database was built in 2018. In addition, the magnetic anomaly map of Korea with a scale of 1:1,000,000 was published. In this paper, we introduced a new magnetic anomaly map of Korea through describing the changing survey parameters during data acquisitions and history of data processing.

Mineralogy of Sea Sand Near Ongjingun through the Separation Processes (옹진군 해사의 선별공정에 따른 광물학적 특성)

  • Chae, Soo-Chun;Shin, Hee-Young;Bae, In-Kook;Kwon, Sung-Won;Lee, Chun-Oh;Kim, Jung-Yoon;Jang, Young-Nam
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2011
  • Mineralogical study was carried out for heavy minerals in the sea sand near Ongjingun bay, Kyonggi-do separated using the gravity and magnetic separators. Ilmenite, zircon and minor monazite and garnet were valuable minerals with gangue minerals of quartz, K-feldspar, plagioclase, muscovite, hornblende, epidote and chlorite. Quantitative analysis with SIROQUANT program showed that the contents of ilmenite separated with the gravity separation (the shaking table separation), the 1st step magnetic separation (rare earth magnetic separation) and the 2nd step magnetic separation (the Eddy current magnetic separation) were increased into 0.8, 18.3, and 48.7%, respectively. The content of ilmenite, monazite and zircon were recalculated based on the chemical composition of the representative and heavy fraction products of raw sand, the 1 step and 2 step gravity separations, and the 1 step and 2 step magnetic separations. The content increased to 0.23, 0.55, 5.22, 16.17, and 44.99% in ilmenite, 0.11, 0.02, 0.16, 0.51, and 1.19% in monazite. Although the zircon content did not differ over the processes (0.13, 0.12, 0.11, 0.15, and 0.10%), the improved recovery of zircon is expected by applying sieving process because of its high content (27%) in the fine grain size fraction (< 140#) of the 2 step gravity separation.

Distribution of Fe-Mn Ore in Ugii Nuur, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 우기누르 철-망간 분포 특성)

  • Park, Gyesoon;Lee, Bum-Han;Kim, In-Joon;Heo, Chul-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed a joint survey on Ugii Nuur Fe-Mn mineralized area. Following the survey, we carried out magnetic survey and 3D magnetic susceptibility inversion. Based on the inversion results, basic feasibility study and 3D imaging of Fe-Mn mineralized area were performed using 3D geological modeling technique. Using the distribution of total magnetic field data, we were confirmed for the possibility of horizontal extension of ore bodies from surface outcrops. The 3D magnetic susceptibility model, which is highly related with Fe content, analyzed by inversion shows that the ore bodies of Deposit 1 and Deposit 2 are extended to the underground and ore bodies that are not exposed on the surface are largely distributed in the underground. If we perform the integration analysis using this magnetic susceptibility model and the ore grade data analyzed by drilling survey, it is possible to carry out the effective potential evaluation of Ugii Nuur Fe-Mn ore deposit.