• Title/Summary/Keyword: magnetic measurement

Search Result 1,258, Processing Time 0.029 seconds

The magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects

  • Lee, C.W.;Shim, S.Y.;Ha, D.H.;Kim, D.H.;Lee, T.W.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.103-106
    • /
    • 2000
  • We have studied the magnetic properties in Bi$_2$Sr$_2$CaCu$_2$O$_8$ single crystal with columnar defects using micro Hall-probe array. We found that fold profiles inside sample were similar to the Bean's critical state model from the magnetic hysteresis measurement. In the magnetic relaxation measurement, the normalized relaxation rates were maximum near the center and decreased toward the edge of the sample expect zero gauss. The relaxation rates as a function of the temperature were maximum near the 40K and rapidly decreased both sides of the peak.

  • PDF

A new magnetic sensor for the non-contact measurement of bending vibrations of non-ferromagnetic pipes (비자성 배관의 비접촉 굽힘 진동 측정을 위한 자기 센서의 개발)

  • Han, Soon-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1154-1158
    • /
    • 2006
  • This investigation suggests a new non-contact type sensor that can measure flexural vibrations of a non-ferromagnetic pipe. The sensor works on the reversed Lorentz force mechanism; however, anti-symmetric bias magnetic field suggested in this work should be applied to measure bending vibration of a non-ferromagnetic pipe. The importance of the suggested magnetic field is verified by a series of experiments. The sensor is applied to the bending vibration measurement and modal testing of an aluminum pipe and shows satisfactory working performance compared to others.

  • PDF

Measurement and Analysis of Electric and Magnetic Fields near a Transmission Tower (송전철탑 주변에서 전장과 자장의 측정과 분석)

  • Lee, B.H.;Gil, H.J.;Ahn, C.H.;Lee, K.O.;Park, T.W.;Kwak, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1827-1829
    • /
    • 1997
  • In this paper, measurement and analysis of ELF electric and magnetic fields due to a transmission line have been carried out and the power frequency field strength measuring system is designed. In order to evaluate electric and magnetic fields associated with 60 Hz electric power transmission and distribution lines, the actual survey near a transmission tower has been made and analyzed. It may be inferred from these results that the maximum electric and magnetic fields strength in the vicinity of a line tower do not exceed 3.5[kV/m] and 20[${\mu}T$]. The results of the field measurements agree with limits and guidelines recommended by various authorized international institutes.

  • PDF

Microwave and RF Heating for Medical Application under Noninvasive Temperature Measurement Using Magnetic Resonance

  • Nikawa, Yoshio;Ishikawa, Akira
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.244-249
    • /
    • 2010
  • Recent development of magnetic resonance imaging (MRI) equipment enables interventional radiology (IVR) as diagnosis and treatment under MRI usage. In this paper, a new methodology for magnetic resonance (MR) scanner to apply not only diagnostic equipment but for treatment one is discussed. The temperature measuring procedure under MR is to measure phase shift of $T_1$, which is the longitudinal relaxation time of proton, for the position inside a sample material with the application of pulsed RF for heating inside the sample as artificial dielectrics. The result shows the possibility to apply MR as temperature measuring equipment and as a heating equipment for applying such as hyperthermia heating modality.

SSFP Interferometry (SSFPI) Technique Applied to functional MRI - A Fast and Direct Measurement of Magnetic Susceptibility Effect (SSFPI 기법을 이용한 MR 뇌기능 영상 -고 속의 자화율 효과의 직접적인 측정)

  • 정준영
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 1996
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRl (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of Vadient (readeut) allows us to measure precession angle 6 which in tw relates to the field inhomogeneity. Combining the two pulses (known as FID and Echo) in FADE (Fast Acquisition Double Echo) sequence, for example, one can obtain the interference term which is directly related to the precession angle It has been known that a fast high resolution magnetic field mapping is possible by use of the modified FADE sequence or SSFPI, and we have attempted to use the SSFPI technique for the susceptibility-induced fMRl. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRl), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are presented.

  • PDF

The Design of Multiplexing Data Acquisition System for Multi Channel Bio-magnetic Signal (다채널 생채 자기 신호의 다중 데이터 획득 시스템 설계)

  • Chang, Won-Suk;Jeon, Chang-Ik;Huh, Young;Jin, Seung-Oh;Kim, Ki-Uk;Lee, Hyun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.515-518
    • /
    • 2003
  • The electrical current generated by heart creates not only electric potential but also a magnetic field. In this paper, we have designed the multiplexing data acquisition system for multichannel bio-magnetic signal measurement. The system consists of VXI rack which is organized MUX and AD board, Industrial rack which is mounted single board computer and DSP board. This system enable to realtime monitoring of multichannel data simultaneously. The number of channel could be increased simply added each module and firmware could be upgraded easily using host port interface of DSP.

  • PDF

Preliminary Study for Non-destructive Measurement of Stress Tensor on H-beam in Tunnel Support System using a Magnetic Anisotropy Sensor (자기 이방성 응력측정법을 활용한 터널 지보 구조물의 비파괴계측에 관한 기초적 연구)

  • Lee, Sang-Won;Akutagawa, Shinichi;Kim, Young-Su;Jin, Guang-Ri;Jeng, Ii-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.766-777
    • /
    • 2008
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Successful design, construction and maintenance of NATM tunnel demands prediction, control and monitoring of ground displacement and support stress high accuracy. A magnetic anisotropy sensor is used for nondestructive measurement of stress on surfaces of a ferromagnetic material, such as steel. The sensor is built on the principle of the magneto-strictive effect in which changes in magnetic permeability due to deformation of a ferromagnetic material is measured in a nondestructive manner, which then can be translated into the absolute values of stresses existing on the surface of the material. This technique was applied to measure stresses of H-beams, used as tunnel support structures, to confirm expected measurement accuracy with reading error of about 10 to 20 MPa, which was confirmed by monitoring strains released during cutting tests The results show that this method could be one of the promising technologies for non-destructive stress measurement for safe construction and maintenance of underground rock structures encountered in civil and mining engineering.

  • PDF

Non-destructive Measurement of H-beam in Support System using a Magnetic Anisotropy Sensor (자기이방성 응력측정법을 이용한 강아치 지보구조물의 비파괴 계측)

  • Yoo, Ji-Hyeung;Moon, Hong-Deuk;Lee, Jae-Ho;Kim, Dae-Sung;Kim, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1392-1397
    • /
    • 2010
  • Currently in increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method(NATM). Successful design, construction and maintenance of NATM tunnel demands prediction, control and monitoring of ground displacement and support stress high accuracy. A magnetic anisotropy sensor is used for non-destructive measurement of stress on surfaces of a ferromagnetic material, such as steel. The sensor is built on the principle of the magneto-strictive effect in which changes in magnetic permeability due to deformation of a ferromagnetic material is measured in a non-destructive manner, which then can be translated into the absolute values of stresses existing on the surface of the material. This technique was applied to measure stresses of H-beams, used as tunnel support structures, to confirm expected measurement accuracy with reading error of about 10 to 20MPa, which was confirmed by monitoring strains released during cutting tests The results show that this method could be one of the promising technologies for non-destructive stress measurement for safe construction and maintenance of underground rock structures encountered in civil and mining engineering.

  • PDF

Development of Joint Angle Measurement System for the Feedback Control in FES Locomotion (FES보행중의 피드백제어를 위한 관절 각도계측 시스템 개발)

  • Moon, Ki-Wook;Kim, Chul-Seung;Kim, Ji-Won;Lee, Jea-Ho;Kwon, Yu-Ri;Kang, Dong-Won;Khang, Gon;Kim, Yo-Han;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.203-209
    • /
    • 2009
  • The purpose of this study is to develop a minimally constraint joint angle measurement system for the feedback control of FES (functional electrical stimulation) locomotion. Feedback control is desirable for the efficient FES locomotion, however, the simple on-off control schemes are mainly used in clinic because the currently available angle measurement systems are heavily constraint or cosmetically poor. We designed a new angle measurement system consisting of a magnet and magnetic sensors located below and above the ankle joint, respectively, in the rear side of ipsilateral leg. Two magnetic sensors are arranged so that the sensing axes are perpendicular each other. Multiple positions of sensors attachment on the shank part of the ankle joint model and also human ankle joint were selected and the accuracy of the measured angle at each position was investigated. The reference ankle joint angle was measured by potentiometer and motion capture system. The ankle joint angle was determined from the fitting curve of the reference angle and magnetic flux density relationship. The errors of the measured angle were calculated at each sensor position for the ankle range of motion (ROM) $-20{\sim}15$ degrees (dorsiflexion as positive) which covers the ankle ROM of both stroke patients and normal subjects during locomotion. The error was the smallest with the sensor at the position 1 which was the nearest position to the ankle joint. In case of human experiment, the RMS (root mean square) errors were $0.51{\pm}1.78(0.31{\sim}0.64)$ degrees and the maximum errors were $1.19{\pm}0.46(0.68{\sim}1.58)$ degrees. The proposed system is less constraint and cosmetically better than the existing angle measurement system because the wires are not needed.

Development of Resonant-Type Magnetometer Using High Permeability Isotropic Magnetic Material (고투자율 등방성 자기 물질을 이용한 공진형 마그네토미터 개발)

  • Yim, Jeong-Bin;Shim, Yeong-Ho;Ahn, Yeong-Sub
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.1 s.22
    • /
    • pp.29-37
    • /
    • 2005
  • The design and development if Resonant-type Magnetometer(RM) using isotropic magnetic with high permeability is described in this paper. At first, the relationship between the inductance L if the coil winding on a magnetic material and the permeability u(H) appearing in the magnetic material with isotropic and high permeability is defined as a background theory. Then the circuit if RM, which is to obtain the values if L as the change qf frequency is implemented using simple Schmitt Trigger Circuit Through the swinging tests, which is to evaluate the measurement ability if RM, the measurement possibility for the component of earth field was confined.

  • PDF