• 제목/요약/키워드: magnetic markers

검색결과 82건 처리시간 0.025초

마그네틱 마커를 이용하는 이동로봇을 위한 위치인식 센서 시스템 (Positioning sensor system for mobile robots using magnetic markers)

  • 김의선;김원호
    • 센서학회지
    • /
    • 제19권3호
    • /
    • pp.221-229
    • /
    • 2010
  • In recent studies, many methods have been studied for mobile robot using magnetic markers on its pathway. This is not influenced by the weather conditions, and makes possible to develop controller with low level processors and simple algorithms. However, the interval between magnets is restricted by the magnetic field intensity and it is impossible to get road information ahead. This paper suggests a method of widening markers and expressing the road information ahead using magnetic markers, and explains a sensor arrangement considering suggested methods. Also, magnetic field analysis was done to investigate the effects of widening magnetic markers with various environments. A small mobile robot was made to figure out the performance of suggested methods, and driving experiments were performed on the straight and curved road with magnetic markers. The results show that the robot moved the prearranged pathway with 0.5 cm lateral displacements and stopped at a stop line using magnetic information on the road.

Low Magnetic Field MRI Visibility of Rubber-Based Markers

  • Kim, Jeong Ho;Jung, Seongmoon;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.89-93
    • /
    • 2019
  • Purpose: This study aims to develop new markers based on silicone rubber and urethane rubber to enhance visibility in low magnetic field magnetic resonance (MR) imaging. Methods: Four types of markers were fabricated using two different base materials. Two of the markers were composed of two different types of silicone rubber: DragonSkin™ 10 MEDIUM and BodyDouble™ SILK. The other two markers were composed of types of urethane rubber: PMC™ 780 DRY and VytaFlex™ 20. Silicone oil (KF-96 1000cs) was added to the fabricated markers. The allocated amount of oil was 20% of the weight (wt%) of each respective marker. The MR images of the markers, with and without the silicone oil, were acquired using MRIdian with a low magnetic field of 0.35 T. The signal intensities of each MR image for the markers were analyzed using ImageJ software and the visibility for each was compared. Results: The highest signal intensity was observed in VytaFlex™ 20 (279.67±3.57). Large differences in the signal intensities (e.g., 627% in relative difference between BodyDouble™ SILK and VytaFlex™ 20) among the markers were observed. However, the maximum difference between the signal intensities of the markers with the silicone oil showed only a 62% relative difference between PMC™ 780 DRY and DragonSkin™ 10 MEDIUM. An increase in the signal intensity of the markers with the silicone oil was observed in all markers. Conclusions: New markers were successfully fabricated. Among the markers, DragonSkin™ 10 MEDIUM with silicone oil showed the highest MR signal intensity.

자계안내시스템용 지자계 제거를 위한 Ground 검출법 (Ground Detection Method for Removement of Earth Field for Magnetic Guidance System)

  • 임대영;정영윤;유영재
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.581-586
    • /
    • 2006
  • 본 논문에서는 무인주행 차량의 자율주행에 사용되는 자계안내시스템에서 지자계를 제거하기 위한 새로운 방법으로 Ground 검출법을 제안한다. 자계안내시스템은 도로에 일정한 간격으로 자계표식을 매설하고 차량이 자계표식으로부터 떨어진 거리를 인식하여 주행하는 방법이다. 차량이 주행 중 측면이탈거리를 알기 위해서는 지자계가 제거된 자계표식의 자계만을 이용해야 한다. 그러나 자계센서는 자계를 검출할 때 자계표식의 자계와 지자계를 함께 계측한다. 지자계는 차량의 주행방향과 경사에 따라 다르게 검출되기 때문에 자계표식의 자계와 더해질 경우 측면이탈거리를 인식하는데 오차를 발생한다. 따라서 본 논문에서는 지자계를 제거하는 새로운 방법을 제안하고, 이를 검증하기 위한 실험 장치를 구성하였다. 그리고 실험을 통하여 제안한 방법의 타당성과 유용성을 입증한다.

자계 극배치를 이용한 지능형 차량용 도로 정보의 인식 (Recognition of road information using magnetic polarity for intelligent vehicles)

  • 김영민;임영철;김태곤;김의선
    • 센서학회지
    • /
    • 제14권6호
    • /
    • pp.409-414
    • /
    • 2005
  • For an intelligent vehicle driving which uses magnetic markers and magnetic sensors, we can get every kind of road information while moving the vehicle if we use the code that is encoded with N, S pole direction of markers. If we make it an only aim to move the vehicle, it becomes easy to control the vehicle the more we put markers close. By the way, to recognize the direction of a marker pole it is much better that the markers have no effect each other. To get road informations and move the vehicle autonomously we propose the methods of arranging magnetic sensors and algorithm of recognizing the position of the vehicle with those sensors. We verified the effectiveness of the methods with computer simulation.

바이모달 트램의 위치 인식 방법 및 정밀 정차 구현 (Implementation for precisely localizing and parking of Bimodal Tram)

  • 서기원;박주연;이상남;류희문;변윤섭
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.452-456
    • /
    • 2009
  • This paper presents a method for precisely localizing and parking of bimodal trams. In order to gam an automatically driving system for bimodal trams, precise up-to-date localization, velocity recognition, distance to next station and precise parking location estimation functions are required. This paper proposes a system consisting of control device, steering device, sensor input equipment, driving system, tachometer, vehicle-side sensors, magnetic markers and magnetic sensors. The tram recognizes the precise location via magnetic markers containing information. Parking position and precise distance calculation is embodied by a tachometer. The vehicle-side sensors are used to assure safe station approaching and parking magnetic markers provide improvement of precision while tram parking. This paper provides a system realizing localization and precise parking and afterwards the automatic drive test results are reported and analyzed.

  • PDF

자기 센서 방식 자율 주행 차량의 경로 인식 성능 개선 (Roadway recognition performance improvement for an autonomous vehicle using magnetic sensor)

  • 김명준;김의선;류영재;임영철
    • 센서학회지
    • /
    • 제12권5호
    • /
    • pp.211-217
    • /
    • 2003
  • 도로의 중앙에 일정한 간격으로 마그네틱 마커를 설치하고 차량에 자기 센서를 장착하여 차량의 이동에 따른 자기장의 변화를 측정하여 차량의 주행 경로를 인식하는 시스템의 성능을 개선하는 방법을 제안한다. 도로에 설치하는 마그네틱 마커들의 설치비를 절감하기 위하여 마커들 간의 설치간격을 기존의 경우보다 넓혔다. 이를 위하여 마커들의 간격에 따른 자계의 분석을 행하여 적절한 마커들의 간격을 알아내고, 6개 센서들의 배치방법과 신경회로망을 이용한 제어방법을 제안하였다. 자기장 분석, 지자기 소거. 학습패턴 획득, 신경망 학습에 의해 조향 제어기를 구성하고 컴퓨터 주행 시뮬레이션을 통해 제안된 방법에 의한 자율주행 차량의 성능이 개선될 수 있음을 확인하였다.

자석마커를 이용한 바이모달트램 자동운전시스템 (Automatic guidance system of Bimodal-tram using magnetic markers)

  • 변윤섭;목재균;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1802-1803
    • /
    • 2011
  • The Korea Railroad Research Institute (KRRI) is developing the Bimodal-tram. The vehicle has a navigation control system (NCS) for automatic driving. The vehicle has to follow a reference path in automatic mode. NCS uses magnetic markers to calculate the vehicle position. The vehicle lane is marked with permanent magnets that are buried in the road. In this purpose, we show the characteristics and the configuration of NCS.

  • PDF

진자검사 계측을 위한 영상 시스템의 개발 (Development of a Vision System for the Measurement of the Pendulum Test)

  • 김철승;문기욱;이수영;엄광문
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.817-819
    • /
    • 2007
  • The purpose of this work is to develop a measurement system of the pendulum test with minimal restriction of experimental environment and little influence of noise. In this work, we developed a vision system without any line between markers and a camera. The system performance is little influenced by the experimental environment, if light are sufficient to recognize markers. For the validation of the system, we compared knee joint angle trajectories measured by the developed system and by the magnetic sensor system during the nominal pendulum test and the maximum speed voluntary knee joint rotation. The joint angle trajectories of the developed system during both tests matched well with those of the magnetic system. Therefore, we suggest the vision system as an alternative to the previous systems with limited practicality for the pendulum test.

High $T_c$ SQUID system for biological immunoassays

  • Enpuku, K.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.7-7
    • /
    • 2000
  • A high $T_c$ SQUID system is developed for the application to biological immunoassay. In this application, magnetic nanoparticles are used as magnetic markers to perform immunoassay, i.e., to detect binding reaction between an antigen and its antibody. The antibody is labeled with ${\gamma}-Fe_2O_3\;(or\;Fe_3O_4)$ nanoparticles, and the binding reaction can be magnetically detected by measuring the magnetic field from the nanoparticles. Design and set up of the system is described. The system consists of (1) SQUID magnetometer or gradiometer made of 30-deg. bicrystal junctions, (2) field and compensation coils to apply the magnetic field of about 1 mT, (3) special Dewar to realize a 2 mm-distance between the SQUID and the sample, (4) two layers of cylindrical shielding to reduce the extemal magnetic noise to about 1/100, and (5) an electric slider to move the sample with a speed of 10 mm/sec. The sensitivity of the system is studied in terms of detectable magnetic flux. For the measurement bandwidth from 0.2 Hz to 10 Hz, minimum-detectable amplitude of the magnetic flux is $0.8\;m\;{\Phi}_o$ and $0.25\;m{\Phi}_o$ for the magnetometer and the gradiometer, respectively, when the magnetic field of 1 mT is applied. The difference between them is due to the residual environmental noise, and the applied magnetic field does not increase the system noise. The corresponding weight of the magnetic markers is 1 ng and 310 pg, respectively. An experiment is also conducted to measure antigen-antibody reaction with the present system. It is shown that the sensitivity of the present system is 10 times better than that of the conventional method using an optical marker. A one order of magnitude improvement of sensitivity will be realized by the sophistication of the present system.

  • PDF

Position Recognition System for Autonomous Vehicle Using the Symmetric Magnetic Field

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • 센서학회지
    • /
    • 제22권2호
    • /
    • pp.111-117
    • /
    • 2013
  • The autonomous driving method using magnetic sensors recognizes the position by measuring magnetic fields in autonomous robots or vehicles after installing magnetic markers in a moving path. The Position estimate method using magnetic sensors has an advantage of being affected less by variation of driving environment such as oil, water and dust due to the use of magnetic field. It also has the advantages that we can use the magnet as an indicator and there is no consideration for power and communication environment. In this paper, we propose an efficient sensor system for an autonomous driving vehicle supplemented for existing disadvantage. In order to efficiently eliminate geomagnetism, we analyze the components of the horizontal and vertical magnetic field. We propose an algorithm for position estimation and geomagnetic elimination to ease analysis, and also propose an initialization method for sensor applied in the vehicle. We measured and analyzed the developed system in various environments, and we verify the advantages of proposed methods.