• Title/Summary/Keyword: magnetic heating

Search Result 268, Processing Time 0.028 seconds

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

Dynamic Formation and Associated Heating of a Magnetic Loop on the Sun. II. A Characteristic of an Emerging Magnetic Loop with the Effective Footpoint Heating Source

  • Tetsuya Magara;Yeonwoo Jang;Donghui Son
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.225-229
    • /
    • 2023
  • We investigated an emerging magnetic loop dynamically formed on the Sun, which has the effective footpoint heating source that may play a key role in heating a solar atmosphere with free magnetic energy in it. It is suggested that the heating source could be related to local compression of a plasma in the emerging loop by means of Lorentz force, which converts the magnetic energy to the internal energy of the plasma that is used to reaccelerate a decelerated downflow along the loop, eventually generating the source when the kinetic energy of the downflow is thermalized. By analyzing very high-cadense data obtained from a magnetohydrodynamic simulation, we demonstrate how the local compression is activated to trigger the generation of the heating source. This reveals a characteristic of the emerging loop that experiences a dynamic loop-loop interaction, which causes the local compression and makes the plasma gain the internal energy converted from the magnetic energy in the atmosphere. What determines the characteristic that could distinguish an illuminated emerging loop from a nonilluminated one is discussed.

Feasibility Study on Magnetic Nanoparticle Hyperthermia in Low Field MRI (저자장 자기공명영상 시스템 내에서 초상자성 나노입자 온열치료를 위한 발열 평가)

  • Kim, Ki Soo;Cho, Min Hyoung;Lee, Soo Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.105-110
    • /
    • 2014
  • For the combination of MRI and magnetic particle hyperthermia(MPH), we investigated the relative heating efficiency with respect to the strength of the static magnetic field under which the magnetic nanoparticles are to be heated by RF magnetic field. We performed nanoparticle heating experiments at the fringe field of 3T MRI magnet with applying the RF magnetic field perpendicularly to the static magnetic field. The static field strengths were 0T, 0.1T, 0.2T, and 0.3T. To prevent the coil heat from conducting to the nanoparticle suspension, we cooled the heating solenoid coil with temperature-controlled water with applying heat insulators between the solenoid coil and the nanoparticle container. We observed significant decrease of heat generation, up to 6% at 0.3T(100% at 0T), due to the magnetic saturation of the nanoparticles of 15 nm diameter under the static field. We think MPH is still feasible at low magnetic field lower than 0.3T if stronger RF magnetic field generation is permitted.

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF

Microwave and RF Heating for Medical Application under Noninvasive Temperature Measurement Using Magnetic Resonance

  • Nikawa, Yoshio;Ishikawa, Akira
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.244-249
    • /
    • 2010
  • Recent development of magnetic resonance imaging (MRI) equipment enables interventional radiology (IVR) as diagnosis and treatment under MRI usage. In this paper, a new methodology for magnetic resonance (MR) scanner to apply not only diagnostic equipment but for treatment one is discussed. The temperature measuring procedure under MR is to measure phase shift of $T_1$, which is the longitudinal relaxation time of proton, for the position inside a sample material with the application of pulsed RF for heating inside the sample as artificial dielectrics. The result shows the possibility to apply MR as temperature measuring equipment and as a heating equipment for applying such as hyperthermia heating modality.

Analysis of the Induction Heating for Moving Inductor Coil

  • Yun J.O.;Yang Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1217-1223
    • /
    • 2006
  • Induction heating is a process that is accompanied with magnetic and thermal situation. This paper presents a simulation of a magneto-thermal coupled problem of an induction heating process for moving inductor coil. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. As the inductor coil moves in the process, solution domains corresponding to inductor changes into those of the air, and the solution domains of air change into those of the inductor. For these reasons, modeling of induction heating process is very difficult with general purpose commercial programs. In this paper, induction heating process for moving coil was simulated with the concept of traveling the position of the heating planes. Finite element program was developed and finite element results were compared with the experimental results.

DYNAMIC FORMATION AND ASSOCIATED HEATING OF A MAGNETIC LOOP ON THE SUN

  • Tetsuya, Magara;Yeonwoo, Jang;Donghui, Son
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.6
    • /
    • pp.215-220
    • /
    • 2022
  • To seek an atmospheric heating mechanism operating on the Sun we investigated a heating source generated by a downflow, both of which may arise in a magnetic loop dynamically formed on the Sun via flux emergence. Since an observation shows that the illumination of evolving magnetic loops under the dynamic formation occurs sporadically and intermittently, we performed a magnetohydrodynamic simulation of flux emergence to obtain a high-cadence simulated data, where temperature enhancement was identified at the footpoint of an evolving magnetic loop. Unlike a rigid magnetic loop with a confined flow in it, the evolving loop in a low plasma β atmosphere is subjected to local compression by the magnetic field surrounding the loop, which drives a strong supersonic downflow generating an effective footpoint heating source in it. This may introduce an energy conversion system to the magnetized atmosphere of the Sun, in which the free magnetic energy causing the compression via Lorentz force is converted to the flow energy, and eventually reduced to the thermal energy. Dynamic and thermodynamic states involved in the system are explained.

Investigation on the Structural Changes of Calcium Silicate Hydrates in Nanosilica-incorporated Cement Pastes exposed to Heating using Nuclear Magnetic Resonance Spectroscopy (핵자기 공명을 활용한 가열에 따른 나노실리카 혼입 시멘트 페이스트 내 칼슘실리케이트 수화물 구조 변화 해석)

  • Suh, Heongwon;Li, Pei-Qi;Liu, Jun-Xing;Bae, Sungchul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.151-152
    • /
    • 2020
  • When concrete is exposed to fire, the thermal decomposition of hydrates of Portland cement paste results in critical damage to the concrete structure of a building. Recently, nanosilica arose as the effective nano-additive which can enhance the thermal resistance of the cementitious materials. However, the mechanism of the enhancement was not elucidated specifically. In this study, we investigated the properties of calcium silicate hydrates(C-S-H)of the nanosilica incorporated cement paste after heating to different heating temperatures (200℃, 500℃, and 800℃) by 29Si nuclear magnetic resonance. The results showed that the polymerization of C-S-H of nanosilica incorporated samples was larger than ordinary cement paste after heating to 200℃, and C-S-H formed during heating process to 500℃ due to the pozzolanic reaction during heating process.

  • PDF

RF Heating of Implants in MRI: Electromagnetic Analysis and Solutions

  • Cho, Youngdae;Yoo, Hyoungsuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2020
  • When a patient takes an MRI scan, the patient has a risk of unexpected injuries due to the intensive electromagnetic (EM) field. Among the injuries, the tissue heating by the time-varying EM field is one of the main issues. Since an implanted artificial structure with a conductive material aggravates the heating effect, lots of studies have been conducted to investigate the effect around the implants. In this review article, a mechanism of RF heating around the implants and related studies are comprehensively investigated.

Analysis of induction heating using analysis of electro-magnetic field (전자기장 해석을 이용한 유도가열 해석)

  • Yun Jin-O;Yang Yeong-Su;Jo Si-Hun;Hyeon Chung-Min
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.187-189
    • /
    • 2006
  • Transient finite element method for analysis of moving coil needs many number of elements and much time to make calculation. Therefore, induction heating process for moving coil was simulated by traveling the position of the heating planes in this paper. In the magnetic and thermal analyses, temperature-dependent magnetic and thermal material properties were considered. Finite element program was developed and finite element results were compared with the experimental results.

  • PDF