• Title/Summary/Keyword: magnetic flux leakage(MFL)

Search Result 59, Processing Time 0.035 seconds

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

Optimum Design of the Non-Destructive Testing System to Maximize the Magnetic Flux Leakages

  • Park, G. S.;P. W. Jang;Park, Y. W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.539-545
    • /
    • 2000
  • This paper describes the design method of the magnetic system to maximize the magnetic flux leakage (MFL) in non-destructive testing (NDT) system. The defect signals in MFL type NDT system mainly depends on the change of the magnetic leakage flux in the region of defect. The characteristics of the B-H curves are analyzed and the design method to define the operating point in B-H curves for the maximum leakage is performed. The computed MFL signal by nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG in the 8 inches test tube with defects. The rhombic defects could be successfully composed from the defect signals.

  • PDF

Research on MFL PIG Design for the Inspection of Underground Gas Pipeline (지하매설 가스관의 검사를 위한 누설자속탐상 PIG 설계에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects in underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

Research on MFL PIG Design for caustic and defect the Inspection of Underground Gas Pipeline (지하매설 가스관의 부식 및 결함 탐지를 위한 비파괴 누설 탐상시스템 개발에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.11-20
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects on underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.

  • PDF

DCT based Magnetic Flux Leakage Analysis for Defect Feature Extraction of Gas Pipelines (DCT 기반의 자기 누설 신호 분석을 통한 가스 배관에서의 결함 신호 특징 추출)

  • Han, Byung-Gil;Park, Gwan-Soo;Yoo, Hui-Ryong;Rho, Young-Woo;Choi, Doo-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.359-360
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) methods are widely employed for the non-destructive testing of gas pipelines. In the application of MFL pipeline inspection technology, corrosion anomalies are detected and identified via their leakage filed due to changes in wall thickness. This paper presents discrete cosine transform (DCT) based MFL signal analysis for defect feature extraction of natural gas pipelines. The original MFL signals are transformed into new ones based on the analysis. The usefulness of the approach has been shown by the experimental results.

  • PDF

Study on the Distortion of Detecting Signals with the Multi-Defects in Magnetic Flux Leakage System (자기누설탐상시스템에서 밀집된 다수의 결함에 의한 탐상 신호 왜곡에 관한 연구)

  • Seo, Kang;Kim, Dug-Gun;Han, Jea-Man;Park, Gwan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.876-883
    • /
    • 2007
  • The magnetic flux leakage(MFL) type nondestructive testing(NDT) method is widely used to detect corrosion, defects and mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Hall sensors detect the leakage fields in the region of the defect. The defects are sometimes occurred in group. The accuracy of the detecting signals in this defect cluster become lowered because of the complexity of the defect cluster. In this paper, the effects of the multi -defects are analyzed. The detecting signals are computed by 3-dimensional finite element method and compared with real measurement. The results say that, rather than the size of the defects, the effects of the relative position of the multi-defects are very important on the detecting signals.

Non-destructive Testing and Numerical Analysis for Ferromagnetic Plates using Magnetic Flux Leakage Method (강자성체 평판의 자속 누설 탐상 비파괴 실험 및 수치해석)

  • Kim, Sean;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.126-128
    • /
    • 2001
  • In this paper, Magnetic Flux Leakage(MFL) method is used to detect surface defect in ferromagnetic plate. Surface defects are created on the SM 45C ferromagnetic plate and magnetizing equipment is composed to perform MFL nondestructive testing. The length and width of defect is twice the thickness of ferromagnetic plate, and defects with different depths are made artificially for the experiment. Also, NdFeB magnet in magnetizing equipment is used to make magnetic flux. This paper shows that it is possibile to detect 10% defect and to analyze numerically for any defect using MFL method.

  • PDF

Inspection of Non-metallic Inclusions in Thin Steel Sheets Using Magnetic Flux Leakage Method (누설자속법을 이용한 박강판의 결함탐상)

  • 임종수;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.302-309
    • /
    • 2000
  • An MFL (Magnetic Flux Leakage) testing system has been developed in order to inspect the non-metallic inclusions in the thin steel sheets. We have made a differential type flux-gate magnetometer using the measurement of apparent coercive field strength of soft magnetic core. The specifications of the electromagnet was determined using FEM software, and MFL testing system with 3 axis degree of freedom was constructed. The feasibility testing for non-metallic inclusion was shown using the system. By digitizing MFL signal and using 2-D graphic display, we could identify various surface defects other than the inclusions.

  • PDF

Implementation of High Magnetization System for Performance Enhancement of Magnetic Flux Leakage Tool

  • Cho, Sung-Ho;Yoo, Hui-Ryong;Kim, Dong-Ku;Park, Dae-Jin;Rho, Yong-Woo;Seo, Kang;Park, Gwan-Soo;Choi, Doo-Hyun;Song, Sung-Jin
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.199-203
    • /
    • 2010
  • This paper discusses the effectiveness of high magnetization saturation in ILI (In-Line Inspection) using an MFL (Magnetic Flux Leakage) tool, and introduces a practical method for improving the magnetization level together with the piggability. Thin steel plates, replacing the conventional wire brushes were used as conductors to transfer the magnetic flux to the pipe wall. The newly designed MFL tool was compared with the conventional version by means of FEM (Finite Element Method) analysis and full-scale experiments. In the results, the newly developed magnetization system obtained a stronger MFL signal amplitude, specially 2.7 times stronger, than that obtained by the conventional magnetization system for the same defect dimensions.