• 제목/요약/키워드: magnetic field parameter

검색결과 228건 처리시간 0.029초

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

뇌방전에 의해서 발생하는 전계와 자계파형의 파라미터 해석 (Parameter Characteristics of the Electric and Magnetic Field Waveforms Associated with Lightning Discharges)

  • 박성열;이복희;전덕규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1867-1869
    • /
    • 1996
  • In this paper, in order to obtain the statistic information for parameters of electric and magnetic field waveforms associated with lightning discharges, the electric and magnetic fields produced by lightning discharges in the summer of 1995 were measured by a hemisphere-type electric field sensor and a loop-type magnetic field sensor, which were installed at the campus of Inha University in Inchon. The signals of the electric and magnetic fields were continuously recorded by a transient digitizer having a resolution of 12 bit and a memory capacity of 5000 point. Negative lightning discharges are produced very more than positive lightning discharges in the summer of Korea. The 10 to 90 % rise time of electric and magnetic fields was 2 $2\;{\sim}\;10\;{\mu}s$. And the zero-crossing time of electric field was $15\;{\sim}\;25\;{\mu}s$, whereas that of magnetic field was $20\;{\sim}\;30\;{\mu}s$.

  • PDF

Hall probe를 이용한 비접촉 임계전류 측정 (Non-contact critical current measurement using hall probe)

  • 김호섭;이남진;하동우;백승규;김태형;고락길;하홍수;오상수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2009
  • Non-contact critical current measurement apparatus was developed using hall probe which measures the magnetic field distribution across the width of superconducting tape. The hall probe consists of 7 independent hall sensors which lie in a line 600 ${\mu}m$. The difference between maximum and minimum magnetic field in the magnetic filed distribution is a main parameter to determine the critical current. As preliminary research, we calculated the magnetic field intensity at the middle sensor, which is a minimum magnetic field and generated by the circular shielding current modeled by Bean model. We confirmed that there are some parameters that affect on the minimum magnetic field; the distance between superconducting layer and hall sensor, the width of superconducting tape, and the critical current distribution across the width of superconducting tape. Among these parameters, the distance between superconducting layer and hall sensor highly influences on the minimum magnetic field.

  • PDF

CONSTRAINING THE MAGNETIC FIELD IN THE ACCRETION FLOW OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI

  • QIAO, ERLIN
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.457-459
    • /
    • 2015
  • Observations show that the accretion flows in low-luminosity active galactic nuclei (LLAGNs) probably have a two-component structure with an inner hot, optically thin, advection dominated accretion flow (ADAF) and an outer truncated cool, optically thick accretion disk. As shown by Taam et al. (2012), within the framework of the disk evaporation model, the truncation radius as a function of mass accretion rate is strongly affected by including the magnetic field. We define the parameter ${\beta}$ as $p_m=B^2/8{\pi}=(1-{\beta})p_{tot}$, (where $p_{tot}=p_{gas}+p_m$, $p_{gas}$ is gas pressure and $p_m$ is magnetic pressure) to describe the strength of the magnetic field in accretion flows. It is found that an increase of the magnetic field (decreasing the value of ${\beta}$) results in a smaller truncation radius for the accretion disk. We calculate the emergent spectrum of an inner ADAF + an outer truncated accretion disk around a supermassive black hole by considering the effects of the magnetic field on the truncation radius of the accretion disk. By comparing with observations, we found that a weaker magnetic field (corresponding to a bigger value of ${\beta}$) is required to match the observed correlation between $L_{2-10keV}/L_{Edd}$ and the bolometric correction $k_{2-10keV}$, which is consistent with the physics of the accretion flow with a low mass accretion rate around a black hole.

The Relation Between Magnetic Field Configuration And The Flux Expansion Factor

  • 이환희;;안준모;강지혜
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.85.1-85.1
    • /
    • 2012
  • In this study we use three-dimensional magnetohydrodynamic simulations of flux emergence from solar subsurface layer to corona. In order to study the twist parameter of magnetic field we compare the simulations for strongly twisted and weakly twisted cases. Based on the results, we derive a flux expansion factor of selected flux tubes which is a ratio of expanded cross section to the one measured at the footpoint of the flux tube. To understand the effect of flux expansion factor, we make a comparison between magnetic field configuration and the expansion factor. By using a fitting function of hyperbolic tangent we derive noticeable correlations among the strength of the vertical magnetic field, current density and expansion factor. We discuss what these results tell about the relationship between the twist of emerging field and the mechanism for the solar wind.

  • PDF

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

임펄스전류에 의한 인하도선 주위에서 자속밀도의 분포 (Distributions of the Magnetic Flux Density Near Down-Conductors Due to Various Impulse Currents)

  • 이복희;장근철;이수봉;강성만;이승칠
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권2호
    • /
    • pp.109-115
    • /
    • 2004
  • This paper deals with the behaviors of magnetic flux density near down-conductors by lightning currents. The background on the principle of magnetic flux density measurements using the RL self-integrating magnetic field sensor was described. The magnetic flux density measuring device consisting of RL self-integrating magnetic field sensor and differential amplifier was designed and fabricated. The frequency bandwidth of the magnetic flux density measuring system ranges from 200 Hz to 300 KHz and the response sensitivity was 0.126 $\mu$T/㎷ The distributions of the magnetic flux density near down-conductors due to impulse currents with various rise times were analyzed as a parameter of the bonding conditions and materials of conductor and wiring conduits. The magnetic flux density due to impulse currents was inversely proportional to the distance between the down-conductor and measuring point. The amplitude of the magnetic flux density for PVC Pipe with down-conductor was 72 $\mu$T/㎷ at the distance of 1m and was higher than for steel conduits and coaxial cable. Finally the magnetic flux density is increased with increasing the di/dt it and oscillation frequency of lightning currents in this experimental ranges.

플라즈마 파라메타와 자계의 상관관계에 관한 연구 (A study on the relationships between plasma parameters and magnetic field)

  • 김두환;장윤석;조정수;박정후
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF