• 제목/요약/키워드: magnetic field coil

검색결과 568건 처리시간 0.025초

A Study on the lightning Discharge Positioning (뇌방전 위치표정에 관한 연구(I))

  • Kil, Gyung-Suk;Park, Dae-Won;Kim, Il-Kwon;Choi, Su-Yeon;Ahn, Chang-Hwan;Lee, Young-Kun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • 제21권10호
    • /
    • pp.40-45
    • /
    • 2007
  • Lightning warning system plays an important role in protecting human life and other facilities from lightning return strokes. This paper dealt with lightning positioning algorithms and circuits as a main function of lightning warning system, which monitor movements and activities of thunderclouds. Electric field component produced by lightning discharge is detected by the configuration of a whip antenna and a narrow-band resonance amplifier with center frequency of 300[kHz]. Measurement circuit of magnetic field waveform consists of a crossed-loop coil and an integral amplifier, and its frequency bandwidth is ranges from 5[kHz] to 1.2[MHz]. The polarity of lightning discharge is discriminated by electric field component. After-fixing the polarity, we can calculate the direction and distance of lightning discharge by the peak and the zero-cross time of magnetic field waveform.

Analysis of Safety Distance and Maximum Permissible Power of Resonant Wireless Power Transfer Systems with Regard to Magnetic Field Exposure

  • Park, Young-Min;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.450-459
    • /
    • 2015
  • In this paper, the safety distances and maximum permissible power (MPP) of resonant wireless power transfer systems are defined and derived with regard to human exposure to electromagnetic field (EMF). The definition is based on the calculated induced current density and electric field in the standard human model located between the transmitting and receiving coil. In order to avoid the adverse health effects such as stimulation of nerve tissues, the induced current and electric field must not exceed the basic restriction values specified in EMF safety guidelines. The different combinations of diameters of the coils and the distance between the two coils are investigated and their effects are analyzed. Two versions of EMF safety guidelines (ICNIRP 1998 and ICNIRP 2010) are used as bases for safety distance calculation and the difference between the two guidelines are discussed.

A Study on the Design and Analysis of High Frequency Coil Shape for Contactless Power Transmission System Combined with Transfer System (이송시스템이 결합된 비접촉 전력전송 시스템용 고주파 코일 형상 설계 및 해석에 관한 연구)

  • Kim, TaeKue;Joo, ChangDae;Ahn, HoKyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제26권1호
    • /
    • pp.41-54
    • /
    • 2021
  • There is a difficulty in improving the working environment and technological advancement due to power supply through cables in the application of linear motors of robots and transfer systems applied in the existing manufacturing industry. We have studied the shape of the high-frequency coil for contactless power transmission system and characteristics of power conversion system, based on the magnetic field analysis of 2D and 3D, using the FEM-based physical analysis program.

Field Analysis in the Ferrite Core at 100 kHz Band Magnetic Field (100 kHz 대역의 자계 환경내(內)에서의 페라이트 코어의 계(界) 해석)

  • Koo, Bon-Chul;Yoo, Jae-Sung;Kim, Mi-Ja;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제18권8호
    • /
    • pp.977-983
    • /
    • 2007
  • Recently, the number of systems which utilize wireless power transmission to a receiving module in a short distance is increasing. For efficient use of receiving space, coils are wound around the ferrite core to produce electromotive force(emf) in suppling power by wireless transmission. This paper analyzed the magnetic flux density distribution in the ferrite core in magnetic field environment which is uniformly oriented along to a single axis at 125kHz. For numerical analysis, Ansoft Maxwell which is applying the FEM(Finite Element Method) method was used. We studied the variations of the gathered magnetic fluxes to the changes of the relative permeabilities of the ferrite cores. Also we calculated the magnetic flux variation by shaving the ferrite core off for the groove of coil winding. Results showed that using a small ferrite core in magnetic field at 100kHz band can increase the amount of magnetic flux $3{\sim}4 times$ than without the core. The magnetic flux decreased 23% by shaving the core 0.5 mm on the periphery of 4.75 mm radius core with the relative permeability 800.

Development of Vibration Motor Using Coreless Permanent Magnet DC Motor (무철심 영구자석 직류 모터를 이용한 진동자 개발)

  • Hwang, Sang-Moon;Chung, Shi-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제16권7호
    • /
    • pp.15-23
    • /
    • 1999
  • With a remarkable expansion of communication industry, a pager or a cellular phone becomes a necessary communication device in modern society. However, a paging signal by a buzzer is often acted as an unpleasant noise in some places, thus necessitating a paging signal by a vibration motor. In this paper, a simpler type of a vibration motor, a coreless permanent magnet(PM) DC motor, is considered to substitute for the conventional vibration motors. Using an analytical method, electromagnetic field and operating torque were calculated for the given inner and outer PM type motors, and the results were confirmed by FEM analysis. As design parameters, number of PM poles, PM radial thickness, coil arc angle and number of winding stacks were chosen for sensitivity analysis. It shows that coil arc angle is the most important design parameter to increase the motor performance, without giving an adverse effect on motor weight, size and manufacturing cost. Based on the analysis of the outer PM type motor, an outer square PM type motor is proposed as the final design. Compared to the outer PM type, outer square type provides more flexibility to attach to the small size cellular phones. With the optimum design of square outer PM DC motor, it can successfully substitute the conventional types with less expensive manufacturing cost. better performance and smaller necessary space.

  • PDF

Fabrication of HTS SQUID Sensors for the Application to a High S/N Ratio Magnetocardiograph System (저잡음 심자도측정시스템 개발을 위한 고온초전도 SQUID 센서의 제작)

  • Kim I. S;Yu K. K;Park Y. K
    • Progress in Superconductivity
    • /
    • 제6권1호
    • /
    • pp.19-23
    • /
    • 2004
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal Josephson junctions on 10 mm ${\times}$ 10 mm $SrTiO_3$ substrates have been fabricated. The pickup coil of the device was designed to have 16 parallel loops with 50-fm-wide lines. We could obtain optimised direct coupled YBCO SQUID magnetometer design with field sensitivity $B_{N}$ $\Phi$/ of $4.5 nT/\Phi_{0}$ and magnetic field noise $B_{N}$ of about $22 fT/Hz^{1}$2/ with an I/f corner frequency of 2 Hz measured inside a magnetically shielded room. Preliminary results of magnetocardiograph measurement using the HTS SQUID magnetometers show signal to noise ratio of about 110, which is comparable to the quality of a commercial MCG system based on Nb-SQUIDs.

  • PDF

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

Sensor Calibration of a Helmet MEG System (헬멧형 뇌자도 장치의 센서 교정)

  • Kwon, H.;Kim, K.;Yu, K.K.;Kim, J.M.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.57-61
    • /
    • 2010
  • We have developed a whole-head MEG system for basic brain research and clinical application. The sensor system consists of a 152 SQUID gradiometer array oriented and located in a suitable way to cover a whole head of the human. The system measures magnetic fields generated by neuronal currents in the brain to get information on the brain activities. For this purpose, the field sensitivity determined by the position, orientation and geometry of the pickup coil as well as amplification factor of the electronic circuits should be known precisely. However, the position and orientation of the pickup coil might be changed from the designed specifications during cool down of the dewar and it is necessary to characterize the field sensitivity. In this study, we made calibration systems to determine the actual position and orientation of the 152 pickup coils and compared the localization results of the N100m source in the auditory cortex.

Analysis of Induction Heating according to Coil Shapes on the V-groove Weld Joint (V-groove를 가진 모재에서 코일 형상에 따른 유도가열 해석)

  • Ahn, Soo Deok;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제32권2호
    • /
    • pp.167-172
    • /
    • 2015
  • In order to prevent crack in thick weld zones, the preheating process such as induction and gas torch heating needs to be applied. Among them induction heating is the most effective heat source because it has rare thermal effect and very rapid heating characteristics. In this paper, when the induction heating method is used to improve arc welding, the temperature distribution and magnetic field density of the welding zones are analyzed by simultaneously solving heat transfer and electromagnetic field equation. In particular, cone and flat type coils are designed and induction heating effects of each type are compared to identify heating characteristics on a V-groove weld joint. As a result, a cone shape coil is more efficient in the preheating process. When induction heating and arc welding system is designed for thick plate with V-groove weld joint, the results in this paper could be applied.

A study on the design of hexapole in an 18-GHz ECR ion source for heavy ion accelerators

  • Wei, Shaoqing;Zhang, Zhan;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • 제18권2호
    • /
    • pp.25-29
    • /
    • 2016
  • High charge state electron cyclotron resonance (ECR) ion source is important on the performance of heavy ion accelerators. In this paper, a low temperature superconductor (LTS) was used to make a hexapole coil for an 18-GHz ECR ion source. Several hexapole structures, including racetrack, graded racetrack, and saddle were implemented and analyzed for the hexapole-in-solenoid ECR ion source system. Under the appropriate radial confinement field, the smaller outer radius of hexapole can be better for the solenoid design. Saddle hexapole was selected by comparing the wire length, maximum outer radius of the hexapole, the Lorentz force at the end part of the hexapole and the maximum magnetic field in the coil. Based on saddle hexapole, a new design for hexapoles, the snake hexapole, was developed in this paper. By comparative analysis of the Lorentz force at the end part of the saddle and snake hexapoles, the snake hexapole is much better in the ECR ion source system. The suggested design for the ECR ion source with the snake hexapole is presented in this paper.