• 제목/요약/키워드: magnetic field coil

검색결과 568건 처리시간 0.033초

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 한국유체기계학회 논문집
    • /
    • 제4권1호
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

배관결함 검출을 위한 자왜형 초음파 센서의 특성 (Characteristics of Magnetostrictive Sensor for Detecting the Flaws in Pipe)

  • 안봉영;김영주;김영길;이승석
    • 비파괴검사학회지
    • /
    • 제20권1호
    • /
    • pp.46-53
    • /
    • 2000
  • 석유화학 설비 등과 같은 노출 배관의 결함을 검출하는데 효율적으로 이용될 수 있는 자왜형 초음파 센서를 제작하였다. 최대의 초음파 발생 효율을 얻기 위한 최적 조건을 설정하였으며, 실험에 사용된 배관의 경우 $250{\sim}350Oe$의 정자기장이 최적이었으며, 180kHz의 주파수를 갖는 초음파를 발생시키기 위해서는 15mm 폭의 코일을 사용하는 것이 가장 좋았다. 최적의 조건에서 발생된 초음파는 50m 이상을 충분히 진행할 수 있으며, 결함의 단면적이 증가함에 따라 수신된 결함 신호는 직선적으로 증가함을 확인하였다.

  • PDF

Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model

  • Shin, Jung-Won
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.283-292
    • /
    • 2020
  • Current sensors that use a Hall element and Hall IC to measure the magnetic fields generated in steel silicon core gaps do not distinguish between direct and alternating currents. Thus, they are primarily used to measure direct current (DC) in industrial equipment. Although such sensors can measure the DC when installed in expensive equipment, ascertaining problems becomes difficult if the equipment is set up in an unexposed space. The control box is only opened during scheduled maintenance or when anomalies occur. Therefore, in this paper, a method is proposed for facilitating the safety management and maintenance of equipment when necessary, instead of waiting for anomalies or scheduled maintenance. A Bluetooth 4.0 low-energy current-sensor system based on near-field communication is used, which compensates for the nonlinearity of the current-sensor output signal using a piecewise linear model. The sensor is controlled using its generic attribute profile. Sensor nodes and cell phones used to check the signals obtained from the sensor at 50-A input currents showed an accuracy of ±1%, exhibiting linearity in all communications within the range of 0 to 50 A, with a stable output voltage for each communication segment.

$SF_6$ 자력팽창 소호부 개발에 관한 실험 및 해석적 고찰 (Development of Hybrid Extinction $SF_6$ Interrupter using Analytical and Experimental Method)

  • 손종만;강종성;이방욱;김영근;김대균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.696-698
    • /
    • 2001
  • This paper considers the research of the hybrid interrupter which adopts both rotating arc and thermal expansion technology. The operating principle of this device depends on rapid arc rotation due to the magnetic field created by the fault current through a coil which is mounted on contacts and also relies on the principle of thermal expansion created by arc energy in extinguishing chamber and finally causes pressure rise in expansion volume. To develope this type of interrupter, we introduced analytical analysis including electromagnetic and arc fluid simulation and experimental analysis including construction of current source generation facility and arc behavior measurements. In this research, the principle of the interrupting techniques are given and analytical and experimental results of hybrid interrupter which is developed by new technology is introduced.

  • PDF

초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석 (A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor)

  • 김태균;허남건;정시영;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

전자기유량계의 개발및 신호 특성에 관한 연구 (A study on the development of an electromagnetic flowmeter and the characterization of flow signal)

  • 임기원;김창호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.361-364
    • /
    • 2002
  • An electromagnetic flowmeter(EMF) was developed and its characteristics were compared with a commercial EMF. The measuring tube of the EMF was basically designed as 100 m diameter. A signal processing circuit was also developed for generating the magnetic field and converting the flow signal to flowrate and flow quantity. To obtain a more stable and reliable flow signal, the double magnetizing frequency was adopted for magnetizing the coil of the EMF For the characterization of EU, the uncertainty of calibrator was estimated within ${\pm}0.5{\%}$, the method of estimation was in accordance with the ISO 17025 recommendation. It was found that the flow signals between the electrodes were about ${\pm}60\;-\;{\pm}300{\mu}V$, which were sufficient for the discrimination of the flowmeter and protecting the noise. The test result against the calibrator, showed the good linearity in the range of $3 m^{3}/h\;and\;70m^{3}/h$. A commercialized design of the EMF will be technically more competitive in domestic and foreign market.

  • PDF

미세동작제어를 위한 자기유변유체 구동기의 동적 특성 (Dynamic Characteristics of Magneto-rheological Fluid Actuator for Micro-motion Control)

  • 김평화;한철희;칼루반 수레쉬;박춘용;신철수;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.511-517
    • /
    • 2016
  • This paper presents dynamic characteristics of a new actuator using magneto-rheological(MR) fluid between two electrode type coils. The concept of the actuator is to strengthen the force due to the magnetic field produced by the electrode-coil for MR fluid. The amount and direction of current input to the electrode-coils decide the characteristics of contraction-mode and extension-mode. For achieving the required actuating displacement and actuating force, the yield stress of the MR fluid between two electrode-coils is precisely changed by the input current. In this work, the MR fluid is operated in squeeze mode. The experimental results shown in this paper depict that it can be applied in the micro-level displacement and vibration control system.

진공차단부에서 발생하는 확산형 아크 수치해석 (Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter)

  • 조성훈;황정훈;이종철;최명준;권중록;김윤제
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

Synthesis of nano-crystalline Si films on polymer and glass by ICP-assisted RF magnetron sputtering

  • Shin, Kyung-S.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2010
  • Nano-crystalline Si thin films were deposited on polymer and glass by inductively coupled plasma (ICP) - assisted RF magnetron sputtering at low temperature in an argon and hydrogen atmosphere. Internal ICP coil was installed to increase hydrogen atoms dissociated by the induced magnetic field near the inlet of the working gases. The microstructure of deposited films was investigated with XRD, Raman spectroscopy and TEM. The crystalline volume fraction of the deposited films on polymer was about 70% at magnetron RF power of 600W and ICP RF power of 500W. Crystalline volume fraction was decreased slightly with increasing magnetron RF power due to thermal damage by ion bombardment. The diffraction peak consists of two peaks at $28.18^{\circ}$ and $47.10^{\circ}\;2{\theta}$ at magnetron RF power of 600W and ICP RF power of 500W, which correspond to the (111), (220) planes of crystalline Si, respectively. As magnetron power increase, (220) peak disappeared and a dominant diffraction plane was (111). In case of deposited films on glass, the diffraction peak consists of three peaks, which correspond to the (111), (220) and (311). As the substrate temperature increase, dominant diffraction plane was (220) and the thickness of incubation (amorphous) layer was decreased.

  • PDF

Eddy Loss Analysis and Parameter Optimization of the WPT System in Seawater

  • Zhang, Ke-Han;Zhu, Zheng-Biao;Du, Luo-Na;Song, Bao-Wei
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.778-788
    • /
    • 2018
  • Magnetic resonance wireless power transfer (WPT) in the marine environment can be utilized in many applications. However, energy loss in seawater through eddy loss (EL) is another consideration other than WPT in air. Therefore, the effect of system parameters on electric field intensity (EFI) needs to be measured and ELs calculated to optimize such a system. In this paper, the usually complicated analytical expression of EFI is simplified to the product of frequency, current, coil turns, and a coefficient to analyze the eddy current loss (ECL). Moreover, as the calculation of ECL through volume integral is time-consuming, the equivalent eddy loss impedance (EELI) is proposed to help designers determine the optimum parameters quickly. Then, a power distribution model in seawater is conceived based on the introduction of EELI. An optimization flow chart is also proposed according to this power distribution model, from which a prototype system is developed which can deliver 100 W at 90% efficiency with a gap of 30 mm and a frequency of 107.1 kHz.