• Title/Summary/Keyword: magnetic exploration

Search Result 211, Processing Time 0.033 seconds

The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced

  • Said, Samia M.;Othman, Mohamed I.A.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.425-434
    • /
    • 2020
  • The present paper is concerned at investigating the effect of hydrostatic initial stress, gravity and magnetic field in fiber-reinforced thermoelastic solid, with variable thermal conductivity. The formulation of the problem applied in the context of the three-phase-lag model, Green-Naghdi theory with energy dissipation, as well as coupled theory. The exact expressions of the considered variables by using state-space approaches are obtained. Comparisons are performed in the absence and presence of the magnetic field as well as gravity. Also, a comparison was made in the three theories in the absence and presence of variable thermal conductivity as well as hydrostatic initial stress. The study finds applications in composite engineering, geology, seismology, control system and acoustics, exploration of valuable materials beneath the earth's surface.

Research Status of Sail Propulsion using the Solar Wind

  • Funaki, Ikkoh;Yamakawa, Hiroshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.583-588
    • /
    • 2008
  • A spacecraft propulsion system utilizing the energy of the solar wind was reviewed. The first plasma sail concept was proposed by Prof. Winglee in 2000, and that was called M2P2(mini-magnetospheric plasmapropulsion). However, the first M2P2 design adopting a small(20-cm-diamter) coil and a small helicon plasma source design was criticized by Dr. Khazanov in 2003. He insisted that: 1) MHD is not an appropriate approximation to describe the M2P2 design by Winglee, and with ion kinetic simulation, it was shown that the M2P2 design could provide only negligible thrust; 2) considerably larger sails(than that Winglee proposed) would be required to tap the energy of the solar wind. We started our plasma ssail study in 2003, and it is shown that moderately sized magnetic sails can produce sub-Newton-class thrust in the ion inertial scale(${\sim}70$ km). Currently, we are continuing our efforts to make a feasibly sized plasma sail(Magnetoplasma sail) by optimizing the magnetic field inflation process Winglee proposed.

  • PDF

2D Inversion of Magnetic Data using Resolution Model Constraint (분해능 모델 제한자를 사용하는 자력탐사자료의 2차원 역산)

  • Cho, In-Ky;Kang, Hye-Jin;Lee, Keun-Soo;Ko, Kwang-Beom;Kim, Jong-Nam;You, Young-June;Han, Kyeong-Soo;Shin, Hong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.131-138
    • /
    • 2013
  • We developed a method for inverting magnetic data to image 2D susceptibility models. The major difficulty in the inversion of the potential data is the nonuniqueness. Furthermore, generally the number of inversion blocks are greater than the number of the magnetic data available, and thus the magnetic inversion leads to under-determined problem, which aggravates the nonuniqueness. When the magnetic data were inverted by the general least-squares method, the anomalous susceptibility would be concentrated near the surface in the inverted section. To overcome this nonuniqueness problem, we propose a new resolution model constraint that is calculated from the parameter resolution. The model constraint imposes large penalty on the model parameter with good resolution, on the other hand small penalty on the model parameter with poor resolution. Thus, the deep-seated model parameter, generally having poor resolution, can be effectively resolved. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and is tested on real airborne data obtained at the Okcheon belt of Korea.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia (인공위성 자력계에서 관측된 동아시아 암권의 지자기이상)

  • Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 2002
  • Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

Magnetization structure of Aogashima Island using vector magnetic anomalies obtained by a helicopter-borne magnetometer (항공 벡터 자기이상 자료를 이용한 아오가시마섬(청도)의 자화구조 연구)

  • Isezaski, Nobuhiro;Matsuo, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • On Aogashima Island, a volcanic island located in the southernmost part of the Izu Seven Islands Chain, vector magnetic anomalies were obtained in a helicopter-borne magnetic survey. The purpose of this study was to understand the volcanic structure of Aogashima Island in order to mitigate future disasters. Commonly, to obtain the magnetic structure of a volcanic island, total intensity anomalies (TIA) have been used, even though they have intrinsic errors that have not been evaluated correctly. Because the total intensity magnetic anomaly (TIA) is not a physical value, it does not satisfy Maxwell's Equations, Laplace's Equation, etc., and so TIA is not suitable for any physical analyses. In addition, it has been conventionally assumed that TIA is the same as the projected total intensity anomaly vector (PTA) for analyses of TIA. However, the effect of the intrinsic error ($\varepsilon_T$ = TIA.PTA) on the analysis results has not been taken into account. To avoid such an effect, vector magnetic anomalies were measured so that a reliable analysis of Aogashima Island magnetization could be carried out. In this study, we evaluated the error in TIA and used vector anomalies to avoid this erroneous effect, in the process obtaining reliable analysis results for 3D, vector magnetization distributions. An area of less than 1 A/m magnetization was found in the south-west part of Aogashima Island at the depth of 1.2 km. Taking the location of fumarolic activity into consideration, the lower-magnetization area was expected to be the source of that fumarolic activity of Aogashima Island.

Controlled Source Magnetotellurics with Vector Measurement Using Electric and Magnetic Sources (전기장 또는 자기장 송신원을 이용한 벡터 CSMT)

  • Lee, Heuisoon;Song, Yoonho
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.451-458
    • /
    • 1997
  • The horizontal magnetic dipole as well as electrical dipole was adopted as a source to compute one-dimensional electromagnetic field behavior in controlled source magnetotellurics. he Cagniard impedances due to horizontal magnetic dipole source, especially phases, showed better frequency characteristics than those due to electric one. The magnetic dipole is inferior to the electric dipole in the point of relatively weak transmitting power at low frequency. But considering high resistivity charateristics of Korean geology, the magnetic dipole source is recommended for the survey up to depth of 500 m. A vector CSMT was introduced to get more reliable data in the area of two- or three-dimensional structures. A software and interpretation technique using polarization ellipses were developed. The technique was tested by synthetic data, which provided theoretical basis of the methodology. Although CSMT has inevitable limitation of investigation depth due to practically possible source-receiver separation, we proposed to use the technique developed in this paper where MT is not available, for example, in extremely noisy area or for shallow target.

  • PDF

Calculation of Leakage Inductance of Integrated Magnetic Transformer with Separated Secondary Winding Used in ZVS PSFB Converter

  • Tian, Jiashen;Zhang, Yiming;Ren, Xiguo;Wang, Xuhong;Tao, Haijun
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.644-651
    • /
    • 2016
  • A novel zero voltage switching (ZVS) phase shift full bridge (PSFB) converter used in geophysical exploration is proposed in this paper. To extend the ZVS ranges and increase power density of the converter, external inductor acting as leakage inductance is applied and integrated into the integrated magnetic (IM) transformer with separated secondary winding. Moreover, the loss of ZVS PSFB converter is also decreased. Besides, the analysis and accurate prediction methodology of the leakage inductance of the IM transformer are proposed, which are based on magnetic energy and Lebedev. Finally, to verify the accuracy of analysis and methodology, the experimental and finite element analysis (FEA) results of IM transformer and 40 kW converter prototypes are given.

Analysis on Wireless Communications Environment at Lunar Surface for Lunar Exploration (달 탐사를 위한 달 표면에서의 무선통신 환경 분석)

  • Lee, Yong-Min;Lee, Byong-Sun;Ahn, Jae-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.50-54
    • /
    • 2014
  • Evaluation of the possible or probable effects of environmental conditions which are temperature, radiation, dust as well as other possibilities in terms of meteoroids, seismicity, and no global magnetic field has been carried out for wireless communications on the lunar surface in this paper. The results considered in this paper can be utilized as a basic information on making efficient use of the design for wireless communications system in Korean lunar exploration project.

A Fast Inversion Method for Interpreting Single-Hole Electromagnetic Data (단일 시추공 전자탐사 자료 해석을 위한 빠른 역산법)

  • Kim, Hee-Joon;Lee, Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.316-322
    • /
    • 2002
  • A computationally efficient inversion scheme has been developed using the extended Born or localized nonlinear approximation to analyze electromagnetic fields obtained in a single-hole environment. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry vertical magnetic dipole source is used throughout. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve desired convergence. In this study, an automatic Lagrange multiplier selection scheme has been developed to enhance the utility of the inversion scheme in handling field data. The inversion scheme has been tested using synthetic data to show its stability and effectiveness.