DOI QR코드

DOI QR Code

2D Inversion of Magnetic Data using Resolution Model Constraint

분해능 모델 제한자를 사용하는 자력탐사자료의 2차원 역산

  • Received : 2013.02.07
  • Accepted : 2013.07.15
  • Published : 2013.08.31

Abstract

We developed a method for inverting magnetic data to image 2D susceptibility models. The major difficulty in the inversion of the potential data is the nonuniqueness. Furthermore, generally the number of inversion blocks are greater than the number of the magnetic data available, and thus the magnetic inversion leads to under-determined problem, which aggravates the nonuniqueness. When the magnetic data were inverted by the general least-squares method, the anomalous susceptibility would be concentrated near the surface in the inverted section. To overcome this nonuniqueness problem, we propose a new resolution model constraint that is calculated from the parameter resolution. The model constraint imposes large penalty on the model parameter with good resolution, on the other hand small penalty on the model parameter with poor resolution. Thus, the deep-seated model parameter, generally having poor resolution, can be effectively resolved. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and is tested on real airborne data obtained at the Okcheon belt of Korea.

새로운 2차원 자력탐사자료 역산 방법을 개발하였다. 중,자력탐사와 같은 포텐셜 자료의 역산에서 가장 문제가 되는 점은 비유일해 문제이다. 일반적으로 자력탐사 자료의 역산은 모델변수의 수가 자료의 수보다 훨씬 많은 불충분 문제이며, 이는 비유일해 문제를 더욱 심화시키게 된다. 일반적인 최소자승법을 자력탐사자료의 역산에 적용하게 되면, 이 상대가 지표면에 집중되는 결과를 초래한다. 본 연구에서는 이러한 비유일해 문제를 극복하기 위하여 모델분해능에 근거한 새로운 모델제한자를 제안하였다. 이 모델제한자는 분해능이 높은 모델변수에는 큰 제한을 가하고, 작은 모델변수에는 약한 제한을 가하게 된다. 따라서 분해능이 낮은 심부의 모델변수도 효과적으로 추정할 수 있다. 개발된 역산 알고리듬을 이용하여, 전형적인 모델에 대한 이론자료의 역산에 적용하였다. 또한 옥천대에서 얻어진 항공자력탐사자료 역산에 적용하였다.

Keywords

References

  1. Bhattacharyya, B. K., 1964, Magnetic anomalies due to prismshaped bodies with arbitrary magnetization, Geophysics, 29, 517-531. https://doi.org/10.1190/1.1439386
  2. Bhattacharyya, B. K., 1980, A generalized multibody model for inversion of magnetic anomalies, Geophysics, 45, 255-270. https://doi.org/10.1190/1.1441081
  3. Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: a practical algorithm for generating smooth models from EM sounding data, Geophysics, 52, 289-300. https://doi.org/10.1190/1.1442303
  4. Hong, S. H., and Choi, W. C., 1978, Explanatory text of the geological map of Geumsan sheet (1:50,000), Korea research institute of geoscience and mineral resources, 20-21.
  5. Kim, H. J., Song, Y., and Lee, K. H., 1999, Inequality constraint in least-squares inversion of geophysical data, Earth Planets Space, 51, 255-259. https://doi.org/10.1186/BF03352229
  6. Kunaratnam, K., 1981, Simplified expression for the magnetic anomalies due to vertical rectangular prism, Geophysical Prospecting, 67, 883-890.
  7. Last, B. J., and Kubik, K., 1983, Compact gravity inversion, Geophysics, 48, 713-721. https://doi.org/10.1190/1.1441501
  8. Li, Y., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data, Geophysics, 61, 394-408. https://doi.org/10.1190/1.1443968
  9. Menke, W., 1984, Geophysical data analysis: Discrete inversetheory, Academic Press Inc
  10. Portniaguine, O., and Zhdanov, M. S., 2002, 3-D magnetic inversion with data compression and image focusing, Geophysics, 67, 1532-1541. https://doi.org/10.1190/1.1512749
  11. Rao, B. D., and Babu, N. R., 1991, A rapid method for threedimensional modeling of magnetic anomalies, Geophysics, 56, 1729-1737. https://doi.org/10.1190/1.1442985
  12. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 931-941. https://doi.org/10.1190/1.1581045