• Title/Summary/Keyword: magnetic entropy change

Search Result 32, Processing Time 0.025 seconds

The Magnetic Entropy Change on La0.7Ba0.3Mn1-xFexO3 Compound

  • Hwang, J.S.;Jang, D.M.;Kim, K.S.;Lee, J.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • The magnetocaloric effect and magnetization behavior have been analyzed in the double-perovskite $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound with the sintering temperature at 1273 K. Samples were fabricated by the conventional solid-state reaction method. X-ray diffraction measurement revealed that all the samples had a single phase in orthorhombic. Detailed investigations of the magnetic entropy behavior of the samples were discussed with the variation of $T_C$. The magnetic entropy changes, ${\Delta}S_M$ of approximately 0.36-1.14 J/kg K were obtained in the temperature range of 145-350 K for the $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound. The enhancement of the magnetic entropy change is believed to be due to changes in the microstructure, which changes the magnetic part of the entropy of a solid around the magnetic ordering temperature.

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Large Magnetic Entropy Change in Single Crystalline and Ploystalline $La_{0.7}Ca_{0.3}MnO_3$ (망간산화물 $La_{0.7}Ca_{0.3}MnO_3$의 거대 자기 엔트로피 효과)

  • 신현수;주홍렬
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.149-153
    • /
    • 2000
  • Large magnetic entropy change in single crystalline and polycrystalline perovskite manganites La$_{0.7}$Ca$_{0.3}$MnO$_3$ has been observed as magnetic field is changed. The large magnetic entropy change is believed to be caused by the abrupt reduction in magnetization as a result of 1st order-like magnetic transition. The large magnetic entropy change and easiness of the Curie temperature manipulation in the temperature range 100 K

  • PDF

Magnetization and Magnetic Entropy Change in Superparamagnetic Co-Ferrite Nanoparticle (초상자성 코발트 페라이트 나노입자에 대한 자화 및 자기엔트로피 변화)

  • Ahn, Yang-Kyu;Choi, Eun-Jung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.63-66
    • /
    • 2008
  • In order to the magnetization and magnetic entropy change for superparamagnetic ferrite nanoparticles, ultrafine cobalt ferrite particles were synthesized using a mircoemulsion method. The peak of X-ray diffraction pattern corresponds to a cubic spinel structure with the lattice constant 8.40 $\AA$. The average particle size, determined from X-ray diffraction line-broadening using Scherrer's, is 7.9 nm. The maximal magnetizations measured at 5 and 300 K are 24.3 emu/g and 17.2 emu/g, respectively. Superparamagnetic behavior of the sample is confirmed by the coincidence of the M vs. H/T plots at various temperatures. According to the thermodynamic theory, magnetic entropy change decreases with increasing temperature.

The Effect of Cr doping on the Magnetic and Magnetocaloric Properties of MnCoGe Alloys

  • Emre, S. Yuce
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.405-411
    • /
    • 2013
  • The structural, magnetic and magnetocaloric properties of $CoMn_{1-x}Cr_xGe$ (x=0.05-0.125) have been investigated by using electron microscopy, x-ray diffraction, calorimetric and magnetic measurements. In this study, our aim is to justify the magnetocaloric effect by tuning the structural and magnetic transition temperature with Cr doping on CoMnGe pure system. The substitution of Cr for Mn leads to a decrease of both structural and magnetic transition temperatures. However, structural and magnetic transition temperatures do not close to each other. From magnetization measurement, we calculate that isothermal entropy change associated with magnetic transition can be as high as 3.82 J $kg^{-1}K^{-1}$ at 302 K in a field of 7 T. Meanwhile, structural phase transition contribution to isothermal entropy change is calculated as 5.85 J $kg^{-1}K^{-1}$ at 322 K for 7 T.

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad;Anwar, Mohammad Shafique;Khan, Saima Naz;Lee, Chan Gyu;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.445-451
    • /
    • 2018
  • We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

Magnetic and Magnetocaloric Properties of (Gd1-xCex)Al2(x = 0, 0.25, 0.5, 0.75) Compounds

  • Gencer, H.;Izgi, T.;Kolat, V.S.;Kaya, A.O.;Atalay, S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.337-341
    • /
    • 2011
  • The magnetic and magnetocaloric properties of $Gd_{1-x}Ce_xAl_2$ (x = 0, 0.25, 0.5, 0.75) intermetallic compounds alloys have been investigated in detail for the first time. XRD patterns indicated that all the samples were crystallized in a single phase with $MgCu_2$-type structure (Laves phase). Ce substitution for Gd increased the lattice parameters and decreased the Curie temperature from 163 K for x = 0 to 37 K for x = 0.75. A maximum entropy change of 3.82 J/kg K was observed when a 2 T magnetic field was applied to the x = 0 sample. This entropy change decreased with increasing Ce content to 2.04 J/kg K for the x = 0.75 sample.

Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite

  • Anwar, M.S.;Kumar, Shalendra;Ahmed, Faheem;Arshi, Nishat;Kim, G.W.;Lee, C.G.;Koo, Bon-Heun
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.457-460
    • /
    • 2011
  • In this paper, magnetic property and magnetocaloric effect (MCE) in perovskite manganites of the type $La_{(0.75-X)}Ce_XCa_{0.25}MnO_3$ (x = 0.0, 0.2, 0.3 and 0.5) synthesized by using the standard solid state reaction method have been reported. From the magnetic measurements as a function of temperature and applied magnetic field, we have observed that the Curie temperature ($T_C$) of the prepared samples strongly dependent on Ce content and was found to be 255, 213 and 150 K for x = 0.0, 0.2 and 0.3, respectively. A large magnetocaloric effect in vicinity of $T_C$ has been observed with a maximum magnetic entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) of 3.31 and 6.40 J/kgK at 1.5 and 4 T, respectively, for $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$. In addition, relative cooling power (RCP) of the sample under the magnetic field variation of 1.5 T reaches 59 J/kg. These results suggest that $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$ compound could be a suitable candidate as working substance in magnetic refrigeration at 213 K.

Theoretical consideration on magnetic entropy changes in CMR materials

  • Phan, Manh-Huong;Pham, Van-Thai;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.120-120
    • /
    • 2002
  • In past years, theoretical controversy involving a realistic and physical mechanism that leads to large magnetic entropy change as a large magneto-caloric effect in colossal magneto-resistance (CMR) materials had been left as an open question. Thus it is desirable to clarify this problem. (omitted)

  • PDF