• Title/Summary/Keyword: magnetic disturbance

Search Result 223, Processing Time 0.024 seconds

Neural Network PID control method for robust disturbance (외란에 강인한 신경망 PID 제어방식)

  • 김영렬;이정훈;강성호;임성진;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.945-948
    • /
    • 2003
  • In this paper, we propose a robust PID control method with neural network to minimize the influence of the disturbance to happen in the system. The proposed method, the neural network filters out the disturbance of control system. The plant input which a disturbance is included is compensated to the output of neural network and the plant is controlled only PID controller. Through the DC motor control simulation and MM-LDM position control experiment, we could confirm the proposed method is robust at the disturbance in control system.

  • PDF

Analysis of External Disturbance Torque on a LEO Satellite (저궤도 위성의 외란 토크 해석)

  • Yim, Jo-Ryeong;Kim, Yong-Bok;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • The external disturbance torque acting on a low earth orbit spacecraft was analyzed. For the Earth pointing attitude, the maximum torque to the spacecraft is about $8.3{\times}10^{-4}$ Nms and the momentum accumulated for an orbit is about 1.4 Nms and for the Sun pointing attitude, the maximum torque to the spacecraft is about $1.6{\times}10^{-3}$ Nms and the momentum is accumulated about 3.0 Nms in the spacecraft body reference frame. The analysis results confirm that the size of magnetic torquer selected previously for the satellite is sufficient to manage the accumulated momentum by considering the dumping capacity for an orbit.

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Experiments (MFXLMS 알고리즘을 이용한 전자기베어링계의 외란보상 제어기 - 실험)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.83-91
    • /
    • 2004
  • This paper illustrates the feasibility and the effectiveness of the disturbance feedforward compensation control proposed in the previous paper. The compensator is designed experimentally by means of the Multiple Filtered-x Least Mean Square algorithm. A 2-DOF active magnetic bearing system subject to base motion is built and the compensation control is applied. The experimental results demonstrate that the compensation control reduces the air-gap responses within 10$%$ of those by the feedback control alone without increasing the control inputs.

Development of Absolute Position Detecting Cylinder and Evaluation under the Load Disturbance (절대위치 검출형 실린더 개발 및 외란 부하에 대한 성능평가)

  • 김성현;박민규;홍영호;이민철;이만형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.68-75
    • /
    • 2003
  • This paper introduces the development of hydraulic cylinder with magnetic sensors detecting absolute and precise position for automation of excavator. The system which is developed can detect absolute position with a little displacement by using algorithm for recognizing datum points, 114 divider algorithm and high precision algorithm improved position precision. We alse evaluate the developed system under the load disturbance and add band pass filter to the previous's signal process circuit for the protecting magnetic sensors's saturation.

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Magnetic levitation control by attractive force compensation

  • Jeong, Nam-Soo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.355-359
    • /
    • 1992
  • This paper presents a procedure to design a real time control system for a magnetic levitation system based on the state space approach by adopting a control method compensating attractive force according to load variation of maglev vehicle. Also the paper has realized a robust control algorithm for the change of self-inductance parameters and the disturbance such as the change of mass of Maglev vehicles. The theoretical results are applied to the gap control problems of an attractive-type-magnetic levitation system and the effectiveness is proved by the implementation of digital control using 16 bits microcomputer.

  • PDF

Robust Control of Horizontal-Shaft Magnetic Bearing System considering Pole Assignment Region (극 영역을 고려한 횡축형 자기 베어링 시스템의 로버스트 제어)

  • 김창화;추만석;양주호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.21-21
    • /
    • 2000
  • In this paper, we design the state feedback gain using linear matrix inequality(LMI) to the multiobjective synthesis, in the magnetic bearing system with integral type servo system. The design objectives can be a H$\_$$\infty$/ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-lnp pole location. To the end, we investigated the validity of the designed controller through results of simulation.

  • PDF

Controller design of sensorless magnetic levitation system by 2-degree-of-freedom method (2자유도 기법에 의한 센서리스 자기 부상계의 제어기 설계)

  • 김창화;정해종;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.426-431
    • /
    • 1997
  • In this paper, a sensorless realization method is proposed for the magnetic levitation system. Also we design the robust servo controller which based on the two degree-of-freedom-control theory and H$\sub$.inf./ control theory for the system. From time responses, we confirm that the proposed sensorless method can be applied the magnetic levitation system. Also the designed controller has the good disturbance rejection and the reference tracking performance.

  • PDF

3D Electromagnetic Analysis of Magnetic Sensor for Improvement of Motor (모터의 성능향상을 위한 마그네틱 센서의 3차원 전자장 해석)

  • Shim, Sang-Oh;Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2381-2387
    • /
    • 2013
  • This paper deals with an optimal angle error reduction method of magnetic hall sensor using hall effect elements with yoke. The magnetic position sensor is required to generate ideal sine and cosine waveforms from its hall effect elements according to rotation angle for precise angle information. However, the output signals are easy to include harmonics due to uneven magnetic field distribution from disturbance in the vicinity of hall effect elements. Thus, The paper studies a way which makes sine and cosine waveforms robust in disturbance and reduces harmonics by installing a yoke around Hall effect elements. The angle detection simulation for the magnetic hall sensor is performed by 3 dimensional finite element method and Taguchi method, one of the design of experiments. For the Taguchi method, three design parameters related to position of hall effect elements and shape of hall effect element yoke are selected.