• Title/Summary/Keyword: magnetic curves

Search Result 254, Processing Time 0.03 seconds

THE MAGNETOSTRICTIVE PROPERTIES OF Dy-Fe-B ALLOYS WITH NANOCRYSTALLINE GRAIN STRUCTURE

  • Lim, S.H.;Kim, S.R.;Noh, T.H.;Lee, S.R.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.795-799
    • /
    • 1995
  • The magnetostriction versus field (${\lambda}-H$) curves for the melt-spun ribbons of $Dy_{x}{(Fe_{1-y}B_{y})}_{1-x}$ (x=0.2, 0.25, 0.3; y=0, 0.05, 0.1, 0.15, 0.2) alloys are measured systematically at various wheel speeds ranging from 10 to 50 m/sec. The ${\lambda}-H$ curves in most cases vary sensitively with the wheel speed and, in the wheel speed range where no amorphous phase is formed, the magnetic softness improves rather continuously with the wheel speed. This result is considered to be due to the reduced grain size with increasing wheel speed, which was confirmed by X-ray diffraction and transmission electron microscopy. In particular, homogeneous and ultrafine grains with size of about 10 nm are formed even in the as-spun state when the $Dy_{0.3}{(Fe_{1-y}B_{y})}_{0.7}$ alloys are quenched at the wheel speed of 30 m/sec (for the alloy with y=0.2) or 40 m/sec (for the alloys with $y{\leq}0.15$) and the ribbons having the nanocrystalline grain structure exhibit good magnetostrictive characteristics.

  • PDF

Mass transfer with Asymmetric Light Curve of Contact and Near-Contact Binaries

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • We have analyzed times of minima for of 6 binary systems. Three binary systems show period decrease at rate $3.19{\times}10-5$ yr -1 for SV Cen, $1.35{\times}10-7$ yr -1 for RT Scl and $1.14{\times}10-7$ yr -1 for AD Phe. Two systems show period increase $5.696{\times}10-8$ yr -1 for SX Aur and $6.93{\times}10-8$ yr -1 for GO Cyg. One system shows cyclic period variation. We estimated the mass transfer rate for 5 binary systems. Four systems show asymmetric light curves. Two asymmetric light curves (SV Cen and RT Scl) are due to hot spot caused by mass transfer. And two asymmetric light curves (AD Phe and TY Boo) are due to cool spot caused by magnetic activities on the cooler component. We also obtain absolute dimensions from photometric solution and spectroscopic solution by analyzing their light curves and radial velocity curves, which are collected from literatures, using 2007 version Wilson and Deviney computer code.

  • PDF

Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.

Contact and Near-Contact Binaries with co-relation of Mass transfer and Asymmetric Light Curve

  • Rittipruk, Pakakaew;Kang, Young-Woon
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.32.3-32.3
    • /
    • 2010
  • We have analyzed times of minima for six eclipsing binary systems which show asymmetric light curves. We found that five binary systems show period decrease and one system shows cyclic period variation. Three asymmetric light curves (SV Cen, RT Scl and VW Boo) are due to hot spot caused by mass transfer. Other three asymmetric light curves (AD Phe,, EZ Hya and TY Boo) are due to cool spot on the cooler component caused by magnetic activities. We also obtain absolute dimensions from photometric solution and spectroscopic solution by analyzing their light curves and radial velocity curves, collected from literatures, using 2007 version Wilson and Devinney computer code.

  • PDF

Effects of neutron irradiation on superconducting critical temperatures of in situ processed MgB2 superconductors

  • Kim, C.J.;Park, S.D.;Jun, B.H.;Kim, B.G.;Choo, K.N.;Ri, H.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.9-13
    • /
    • 2014
  • Effects of neutron irradiation on the superconducting properties of the undoped $MgB_2$ and the carbon(C)-doped $MgB_2$ bulk superconductors, prepared by an in situ reaction process using Mg and B powder, were investigated. The prepared $MgB_2$ samples were neutron-irradiated at the neutron fluence of $10^{16}-10^{18}n/cm^2$ in a Hanaro nuclear reactor of KAERI involving both fast and thermal neutron. The magnetic moment-temperature (M-T) and magnetization-magnetic field (M-H) curves before/after irradiation were obtained using magnetic property measurement system (MPMS). The superconducting critical temperature ($T_c$) and transition width were estimated from the M-T curves and critical current density ($J_c$) was estimated from the M-H curves using a Bean's critical model. The $T_cs$ of the undoped $MgB_2$ and C-doped $MgB_2$ before irradiation were 36.9-37.0 K and 36.6-36.8 K, respectively. The $T_cs$ decreased to 33.2 K and 31.6 K, respectively after irradiation at neutron fluence of $7.16{\times}10^{17}n/cm^2$, and decreased to 22.6 K and 24.0 K, respectively, at $3.13{\times}10^{18}n/cm^2$. The $J_c$ cross-over was observed at the high magnetic field of 5.2 T for the undoped $MgB_2$ irradiated at $7.16{\times}10^{17}n/cm^2$. The $T_c$ and $J_c$ variation after the neutron irradiation at various neutron fluences were explained in terms of the defect formation in the superconducting matrix by neutron irradiation.

MAGNETIC PROPERTIES OF GRANULAR Fe-SiO FILMS

  • Furubayashi, Takao;Nakatani, Isao
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.474-477
    • /
    • 1995
  • Granular Fe-SiO films were prepared by co-evaporating in a vacuum. Magnetic properties of the films were investigated by $M\"{o}ssbauer$ and magnetization measurments. The $M\"{o}ssbauer$ data suggest that the films consist of amorphous Fe-Si alloy particles with the size of nanometers. Superparamagnetic magnetization curves were well reproduced by considering the distribution of particle size and the magnetic dipole interaction between particles as the mean field.

  • PDF

KILLING MAGNETIC FLUX SURFACES IN EUCLIDEAN 3-SPACE

  • Ozdemir, Zehra;Gok, Ismail;Yayli, Yusuf;Ekmekci, F. Nejat
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.329-342
    • /
    • 2019
  • In this paper, we give a geometric approach to Killing magnetic flux surfaces in Euclidean 3-space and solve the differential equations which expressed the mentioned surfaces. Furthermore we give some examples and draw their pictures by using the programme Mathematica.

Analysis on Current Limiting Characteristics According to the Influence of the Magnetic Flux for SFCL with Two Magnetic Paths

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1909-1913
    • /
    • 2014
  • In this study, a superconducting fault current limiter (SFCL) having two magnetic paths was proposed, and its current limiting characteristics were analyzed. For the SFCL to effectively perform the current limiting operation, it must be designed considering the magnetic saturation of the E-I core. Further, the influence of the magnetic flux on its peak current limiting characteristics was investigated. In addition, the magnetic flux curves of the SFCL obtained from the fault current limiting experiments were analyzed, and the subtractive polarity winding case was observed to not only further reduce the saturation potential of the core but also perform the peak current limiting functions well when compared with the additive polarity winding case.