• Title/Summary/Keyword: magnetic core

Search Result 964, Processing Time 0.023 seconds

Study on the Characteristics of 30 kVA Inductive High-Tc Superconducting Fault Current Limier (30 kVA급 유도형 고온초전도 한류기의 특성 연구)

  • 이찬주;이승제;강형구;배덕권;안민철;현옥배;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.110-113
    • /
    • 2002
  • The high-tc superconducting fault current limiters (SFCL) are studied worldwide to be classified as resistive type or inductive type such as magnetic shielding type and dc reactor type. This Paper deals with an open core type SFCL, a kind of magnetic shielding type SFCL. We manufactured a 30 kVA open core type SFCL. It was modified from the old one with a rated power of 8 kVA. We stacked four superconducting tubes as magnetic shielding material and used the same primary winding as the old one. The experiments were performed with a maximum source voltage of 1 kV. The results show that the fault current in the source voltage of 1 kVrms was reduced to be about 105 Apeak, which was calculated to be about 22 % of the fault current in the system without an SFCL.

Microstructural and Magnetic Characterization of Fe Nanosized Powder Synthesized by Pulsed Wire Evaporation

  • Kim, Deok Hyeon;Lee, Bo Wha
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.100-103
    • /
    • 2017
  • We studied the microstructure and magnetic properties of Fe nanosized powder synthesized by the pulsed wire evaporation method. The x-ray diffraction spectrum confirmed that this powder had a pure ${\alpha}$-Fe phase. Scanning electron microscope and transmission electron microscope measurements indicated that the prepared powder had uniform spherical shape with core-shell structure. The mean powder size was about 35 nm and the thickness of the surface passivation layer was about 5 nm. Energy dispersive X-ray spectroscopy measurement indicated that the surface passivation layer was iron oxide. Magnetic field dependent magnetization measurement at room temperature showed that the maximum magnetization of the prepared powder was 177.1 emu/g at 1 T.

Preparation and Characteristics of the Ni-Ferrite Encapsulated Mo-Permalloy Powder

  • Park, Hyun-Kyu;Ji, In-Geol;Oh, Jae-Hee;Ko, Taeg-Yung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.700-702
    • /
    • 2006
  • We prepared a Ni-ferrite encapsulated Mo-permalloy powder through simple electroless plating and heat treatment. It was observed that Ni-ferrite particles formed in a spherical form on each Mo-permalloy grain. The microstructure and the magnetic characteristics of the encapsulated powders depended strongly on oxidation time in the heat-treatment. When the powder was oxidized for 60 min, a dense Ni-ferrite layer covered the Mo-permalloy grain, which in turn exhibited high saturation magnetization of 85.8 emu/g. The magnetic core prepared additionally with the encapsulated powder exhibited a resonant frequency of 12 kHz.

MAGNETIC PROPERTIES OF FERRITE CORES UNDER DC-BIASED FIELD

  • Fukunaga, H.;Masumoto, S.;Ohta, Y.;Kakehashi, H.;Ogasawara, H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.606-609
    • /
    • 1995
  • Ferrite cores are often magnetized under DC-biased field because they have been intensively used in electronic circuits such as an inverter circuit and a switching regulator circuit. Thus we investigated the effects of DC-biased field on magnetic properties in the frequency range of DC-100kHz for two kinds of ferrite cores, TDK PC38 and TDK $H_{3}S$, which have different shapes of B-H loop from each other. The magnetic loss per cycle, W/f, in the $H_{3}S$ core decreased with increasing the strength of DC-biased field, although W/f in the PC38 core increased monotonically with DC-biased field. The observed decreasing tendency differs from the previous result for Si-Fe and ferrite cores, and can be attributed to decrease in eddy current loss as well as that in hysteresis loss.

  • PDF

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

So, You Need Reliable Magnetic Measurements You Can Use With Confidence? How the Magnetic Measurement Capabilities at NPL Can Help

  • Hall, Michael;Harmon, Stuart;Thomas, Owen
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.339-341
    • /
    • 2013
  • The magnetic field standards, facilities and capabilities available at NPL for the calibration of magnetometers and gradiometers and the measurement of the magnetic properties of materials will be introduced. The details of the low magnetic field facility will be explained and the capabilities this facility enables for the characterisation and calibration of ultra-sensitive room temperature magnetic sensors will be presented. Building on core material capabilities that are compliant with the IEC 60404 series of written standards, the example of a standard permeameter that has been modified for the measurement of strips for real world conditions is discussed. This was incorporated into a stress machine to measure the DC properties of the soft magnetic materials used by the partners of a collaborative industry led R&D project at stress levels of up to 700 MPa. The results for three materials are presented and the changes in the properties with applied stress compared to establish which material exhibits favourable properties.

Synthesis and Characterization of Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticles (Magnetic Core-shell ZnFe2O4@ZnO@SiO2 Nanoparticle의 합성과 성질에 관한 연구)

  • Yoo, Jeong-Yeol;Lee, Young-Ki;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.397-406
    • /
    • 2015
  • ZnO, II-VI group inorganic compound semi-conductor, has been receiving much attention due to its wide applications in various fields. Since the ZnO has 3.37 eV of a wide band gap and 60 meV of big excitation binding energy, it is well-known material for various uses such the optical property, a semi-conductor, magnetism, antibiosis, photocatalyst, etc. When applied in the field of photocatalyst, many research studies have been actively conducted regarding magnetic materials and the core-shell structure to take on the need of recycling used materials. In this paper, magnetic core-shell ZnFe2O4@SiO2 nanoparticles (NPs) have been successfully synthesized through three steps. In order to analyze the structural characteristics of the synthesized substances, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR) were used. The spinel structure of ZnFe2O4 and the wurtzite structure of ZnO were confirmed by XRD, and ZnO production rate was confirmed through the analysis of different concentrations of the precursors. The surface change of the synthesized materials was confirmed by SEM. The formation of SiO2 layer and the synthesis of ZnFe2O4@ZnO@SiO2 NPs were finally verified through the bond of Fe-O, Zn-O and Si-O-Si by FT-IR. The magnetic property of the synthesized materials was analyzed through the vibrating sample magnetometer (VSM). The increase and decrease in the magnetism were respectively confirmed by the results of the formed ZnO and SiO2 layer. The photocatalysis effect of the synthesized ZnFe2O4 @ZnO@SiO2 NPs was experimented in a black box (dark room) using methylene blue (MB) under UV irradiation.

A Study on the Mechanical Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 역학적 특성에 관한 연구)

  • Chun, Byung-Sik;Yang, Hyung-Chil;Lee, Sang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.65-72
    • /
    • 2006
  • This study is about the estimation of the mechanical properties of cement grout material using a magnetic field treated water instead of tap water. The water that passed through a magnetic system is called MFTW. Similar research indicates that 5% of cement dosage can be saved by decreasing bleeding of concrete and improving resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by molecular structure of water. Magnetic force makes water clusters into single molecule or small ones. Hence, the activity of water is improved by the magnetic force. While hydration of cement particles is on progress, the MFTW can penetrate the core region of cement particles more easily. Therefore, the hydration can be carried out more efficiently and the compression strength of concrete is highly improved. The sample of the sodium silicate cement grout's homogel using the MFTW results in highly compressive strength increases in compressive strength approximately from 20% to 50%.