DOI QR코드

DOI QR Code

Microstructural and Magnetic Characterization of Fe Nanosized Powder Synthesized by Pulsed Wire Evaporation

  • Kim, Deok Hyeon (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies) ;
  • Lee, Bo Wha (Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies)
  • Received : 2017.01.16
  • Accepted : 2017.02.06
  • Published : 2017.03.31

Abstract

We studied the microstructure and magnetic properties of Fe nanosized powder synthesized by the pulsed wire evaporation method. The x-ray diffraction spectrum confirmed that this powder had a pure ${\alpha}$-Fe phase. Scanning electron microscope and transmission electron microscope measurements indicated that the prepared powder had uniform spherical shape with core-shell structure. The mean powder size was about 35 nm and the thickness of the surface passivation layer was about 5 nm. Energy dispersive X-ray spectroscopy measurement indicated that the surface passivation layer was iron oxide. Magnetic field dependent magnetization measurement at room temperature showed that the maximum magnetization of the prepared powder was 177.1 emu/g at 1 T.

Keywords

References

  1. H. Zeng, J. Li, J. P. Liu, and S. Sun, Nature 420, 395 (2002). https://doi.org/10.1038/nature01208
  2. S. R. Rudge, T. L. Kurtz, C. R. Vessely, L. G. Catteral, and D. L. Wlliamson, Biomaterials 21, 1411 (2000). https://doi.org/10.1016/S0142-9612(00)00006-5
  3. E. P. Wohlfarth and K. H. J. Buschow, "Ferromagnetic Materials: A Handbook on the Properties of Magnetically Ordered Substance", North-Holland, Amsterdam (1988).
  4. R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. O'Horo, B. N. Ganguly, V. Mehrotra, M. W. Russell, and D. R. Huffman, Science 257, 219 (1992). https://doi.org/10.1126/science.257.5067.219
  5. Q. Liu and Z. Xu, J. Appl. Phys. 79, 4702 (1996). https://doi.org/10.1063/1.361711
  6. M. Allen, D. Willits, J. Mosolf, M. Young, and T. Douglas, Adv. Mater. 14, 1562 (2002). https://doi.org/10.1002/1521-4095(20021104)14:21<1562::AID-ADMA1562>3.0.CO;2-D
  7. Y. F. Shen, J. Tang, Z. H. Nie, Y. D. Wang, Y. Ren, and L. Zuo, Sep. Purif. Technol. 68, 312 (2009). https://doi.org/10.1016/j.seppur.2009.05.020
  8. A. Dyal, K. Loos, M. Noto, S. W. Chang, C. Spagnoli, K. V. P. M. Shafi, A. Ulman, M. Cowman, and R. A. Gross, J. Am. Chem. Soc. 125, 1684 (2003). https://doi.org/10.1021/ja021223n
  9. R. C. O'Handley, "Modern Magnetic Materials: Principles and Applications", Wiley, New York (1999) p. 125.
  10. M. P. Morales, S. Veintemillas-Verdagure, M. I. Montero, and C. J. Serna, Chem. Mat. 11, 3058 (1999). https://doi.org/10.1021/cm991018f
  11. M. Alagiri and Sharifah Bee Abdul Hamid, J. Sol-Gel Sci. Technol. 74, 783 (2015). https://doi.org/10.1007/s10971-015-3663-y
  12. K. R. Lestari, P. Yoo, D. H. Kim, C. Liu, and B. W. Lee, J. Korean Phys. Soc. 66, 651 (2015). https://doi.org/10.3938/jkps.66.651
  13. H. M. Lee, Y. R. Uhm, and C. K. Rhee, J. Alloys Compd. 461, 604 (2008). https://doi.org/10.1016/j.jallcom.2007.07.075
  14. Y. C. Han, Y. H. Kim, J. K. Heo, Y. C. Kang, and Y. S. Kang, Proceeding, IEEE Nanotechnology Materials and Devices Conference 2006, 650 (2006).
  15. H. Kim and S. Y. An, J. Magn. 20, 138 (2015). https://doi.org/10.4283/JMAG.2015.20.2.138