• Title/Summary/Keyword: magnetic bearing control

Search Result 215, Processing Time 0.021 seconds

Study on the Active Vibration Control of Magnetic Bearing System using $H_{\infty}$ Controller (능동 자기 베어링 제어를 위한 $H_{\infty}$ 제어기 설계)

  • 고무일;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.303-306
    • /
    • 1997
  • Magnetic bearings have been adopted to support the rotor by electromagnetic force without mechanical contact and have many advantages. The application of the magnetic bearings have become more and more widespread in recent years. But magnetic bearings require feedback control for stable operation because they are inherently open loop unstable systems. In this study, H infinity controller has been applied for rotor-magnetic bearing system for vibration control. The result showed that H infinity controller has better performance than PID controller through simulations.

  • PDF

A Study on the Optimal Design for a Magnetic Bearing-Rotor with Maximum Stiffness using a Genetic Algorithm (유전자 알고리즘을 이용한 최대 강성을 갖는 자기베어링-회전체 최적설계에 관한 연구)

  • Kim, Chae-Sil;Jung, Hoon-Hyung;Park, Bong-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.167-174
    • /
    • 2013
  • High speed rotor systems with magnetic bearings have been the subject of much research in recent years due to the potential for active vibration control. In this thesis, optimal design was conducted for an 8-pole heteropolar magnetic bearing used in the flexible rotor of a turbo blower. In connection with bearing stiffness, this optimal design process was conducted using a genetic algorithm(GA), which is based on natural selection and genetics. The maximum stiffness of the magnetic bearing-rotor was found by considering the critical speeds of the flexible rotor. As a result, the magnetic bearings were optimized to have maximum stiffness.

A Design and Control of an Active Magnetic Bearing System (능동형 자기 베어링 시스템의 설계 및 제어)

  • 김종문;최영규
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • In this paper, an active magnetic bearing(AMB) system is designed and controlled using a digital Proportional-Integral-Derivative(PID) control concept. The plant dynamics consisting of actuator and rigid rotor dynamics are described. A digital PID controller with a global control and a local control concept is designed and implemented using digital signal processor. Some experiments are conducted with each global control and local control concept. These include start-up test, impulse test, whirl response, and generator load test. The experimental results and comparison between those of a global control and a local control indicate that the global control of concept has impressive static and dynamic control performance for the prototype considered. From the whirl test, the developed system set can be controlled within about $\pm10\mu\textrm{m}$ gap variation at the rotational speed of 6000rpm and generate the AC power of frequency of $60\textrm{Hz}$, voltage of 100V and current of 0.8$\textit{A}$.

Fault Tolerant Control of 6-Pole homopolar Magnetic Bearings (호모폴라형 6극 자기베어링의 고장강건 제어)

  • 나언주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.826-830
    • /
    • 2004
  • Fault tolerant control method for 6-pole homopolar magnetic bearings are presented. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a novel distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate this control method.

  • PDF

Experimental Evaluation of Q-Parameterization Control for the Imbalance Compensation of Magnetic Bearing Syatem (Q-매개변수화 제어를 이용한 자기축수 시스템의 불평형 보상에 대한 실험적평가)

  • Lee, Jun-Ho;Kim, Hyeon-Gi;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.278-285
    • /
    • 1999
  • This paper utilizes the method of Q-parameterization control to design a controller which solves the problem of imbalance in magnetic bearing systems. There are two methods to solve this problem using feedback controal. The first method is to compensate for the imbalance forces by generating opposing forces on the bearing surface (imbalance compensation). The second method is to make the rotor rotate around its axis of inertia (automatic balancing);in this case no imbalance forces will be generated. In this paper we deal with only imbalance compensation. The free parameter of the Q-parameterization controller is chosen such that these goals are achieved. After the introduction of a model of the magnetic bearing system, we explain the Q-parameterization controller design of the magnetic bearing system with emphasis on the rejection of sinusoidal disturbance for imbalance compensation design. The design objectives are formulated as a linear equations in the controller free paramete Q. Finally, simulation and experimental results are presented and showed the robustness and effectiveness of the proposed controllers.

  • PDF

Sliding Mode Control of an Active Magnetic Bearing System (능동자기베어링계의 슬라이딩모드 제어)

  • 강민식
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.439-448
    • /
    • 2004
  • Magnetic bearing is an attractive device in precision engineering field because of its non-contacting nature and controllability of its dynamic characteristics. This paper provides a method of designing a sliding mode control for an active magnetic hearing(AMB) system which is used to support the elevation axis of a target tracking sight instead of mechanical bearings to eliminate the effect of mechanical friction. In such system, the axis should be levitated and supported within a predetermined air gap while AMB is excited by base motion. Experimental results showed that the sliding mode control is effective in disturbance rejection than conventional PID-control without any additive measurements.

Sliding Mode Control for an Active Magnetic Bearing System (능동자기베어링계를 위한 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.82-88
    • /
    • 2008
  • This paper describes an application of sliding mode control to an active magnetic bearing(AMB) system. A sliding mode control is robust to model uncertainties and external disturbances. To ensure the authority of sliding mode control, model parameter uncertainties caused from linearization of electro-magnetic attractive force are analyzed and a domain of parameter uncertainties in which reachability to sliding surface is guaranteed is derived. The validity of the analysis is illustrated along with some simulation examples.

Disital Control for Active Magnetic Bearing System (능동자기베어링시스템의 디지털 제어)

  • 박영진;김승철;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.311-316
    • /
    • 1994
  • In this study, a governing equation for 4-axis active magnetic bearing system composed of a rigid rotor and two radial magnetic bearings is derived. We find out that there are two kind of coupling between control axes in the system. And digital contralized controller is designed based on state-space approach and linear quadratic regulator(LQR) theory. By numerical simulation, it is shown what the designed controller can stabilize the system and control the coupling effectively using limited control input.

  • PDF

Fuzzy Control of Magnetic Bearing System Using Modified PDC Algorithm

  • Joongseon Joh;Lee, Sangmin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.337-342
    • /
    • 1998
  • A new fuzzy control algorithm for the control of active magnetic bearing (AMB) systems is proposed in this paper. It combines PDC design of Joh et al. [8][9] and Namdani-gype control rules using fuzzy singletons to handle the nonlinear characteristics of AMB systems efficiently. They are named fine mode control and rough mode control , respectively. The rough mode control yields the fastest response for large deviation of the rotor and the fine mode control fives desired transient response for small deviation of the rotor. The proposed algorithm is applied a AMB systems to verify the performance of the method, The comparison of the proposed method to a linear controller using a linearized model about the equilibrium point and PDC algorithm in [7] show the superiority of the proposed algorithm.

  • PDF

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.