• Title/Summary/Keyword: magnetic X-ray microscopy

Search Result 167, Processing Time 0.024 seconds

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

A Study on the Perpendicular Magnetic Anisotropy of Co-Pt Alloy Thin Films Deposited by DC Magnetron Sputtening (직류 마그네트론 스퍼터링으로 형성한 Co-Pt 합금박막의 수직자화기구에 대한 연구)

  • 박성언;김기범
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.263-271
    • /
    • 1994
  • We have produced $Co_{1-x}Pt_{x}(X\;=\;0.53\;and\;0.75)$ alloy films by DC magnetron sputtering at various substrate temperatures and sputtering pressures. Sputter-deposited Co-Pt alloy films showed a strong (111) texture, and the degree of (111) texture of the as-deposited film was found to depend on the substrate temperature and Ar pressure. However, we observed that the degree of (111) texture did not affect the magnetic properties. In addition, we have investigated the effect of heat-treatment on magnetic properties of these films. While the magnetic properties of the $Co_{0.25}Pt_{0.75}$ alloy films showed no noticeable changes, the coercivities and the squarenesses of the $Co_{0.47}Pt_{0.53}$ alloy films were drastically increased by annealing. Structural analysis using transmission electron microscopy(TEM) and x-ray diffractornetry(XRD) revealed that $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases, respectively, were formed, each with a strong (111) texture. By comparing the magnetic properties between $CoPt(L1_{0})$ and $CoPt_3(L1_{2})$ ordered phases in relation to the atomic arrangements in a unit cell, we conclude that the magnetic anisotropy in the Co-Pt alloy system depends mainly on the atomic arrangements of Co and Pt.

  • PDF

The Effect of Additional Elements on the Tailored Magnetic Properties of Electrochemically Prepared CoPtP-X Alloys (전기화학적으로 제조한 CoPtP-X합금의 첨가제 효과에 따른 맞춤형 자기적 성질)

  • Park, H.D.;Lee, K.H.;Kim, G.H.;Jeung, W.Y.;Choi, D.H.;Lee, W.Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.94-98
    • /
    • 2005
  • Coptp films with the additive elements (X=Fe, Mn) of varying concentrations were prepared by in-situ electrodeposition, to tailor their magnetic properties. Alloys of CoPtP-X (X=Fe, Mn) were synthesized by changing the solution concentrations of Fe and Mn for electrodeposition. In the electrodeposited CoFePtP alloys, preferred orientation of the electrodeposited films changed from hexagonal (001) to (100) direction with increasing iron contents as revealed by X-ray diffraction, and these films exhibited various magnetic properties ranging from a typical hard magnetic to a soft magnetic property in accordance with microstructural variations. In the case of Mn addition, excellent hard magnetic property was observed at a specific Mn concentration of 0.0126 M in the electrolyte, with the coercivity of 4630 Oe and squareness of 0.856 and this was attributed to the fact that magnetization easy-axis (hexagonal c-axis) coincides with the preferred growth orientation of the film confirmed by transmission electron microscopy.

A Study on Physical Properties Of Co3O4-added Ni- Zn Ferrite at High Frequency (Co3O4첨가에 따른 고주파용 Ni-Zn계 ferrite의 물리적 특성 연구)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.791-795
    • /
    • 2002
  • We studied the physical properties of $Co_3$$O_4$-added Ni-Zn ferrite which were sintered at 1050~110$0^{\circ}C$ for 2 hours. X-ray diffraction showed a spinel structure, and optical microscopy showed grain sizes of 5 to 10 $\mu\textrm{m}$. As the sintering temperature was increased from $1050^{\circ}C$ to $1070^{\circ}C$, the initial permeability and magnetic induction increased, and both of the loss factor and the coercive force decreased. The Curie temperatures were about $^234~245{\circ}C$ with added $Co_3$$O_4$. The initial permeability was 350 to 420 and maximum magnetic induction density and coercive force 4870G to 4980G and 0.15 Oe to 0.21 Oe, respectively which were similar to those of Ni-Zn ferrite synthesized in the conventional process. The frequency of specimen was in the range of 1MHz to 300MHz. In the plot of initial permeability vs. frequencies, a $180^{\circ}C$ rotation of the magnetic domain could be perceived in a broad band of microwave before and after the resonance frequency.

Biguanide-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: An Efficient Heterogeneous Organosuperbase Catalyst for Various Organic Transformations in Aqueous Media

  • Alizadeh, Abdolhamid;Khodaei, Mohammad M.;Beygzadeh, Mojtaba;Kordestani, Davood;Feyzi, Mostafa
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2546-2552
    • /
    • 2012
  • A novel biguanide-functionalized $Fe_3O_4/SiO_2$ magnetite nanoparticle with a core-shell structure was developed for utilization as a heterogeneous organosuperbase in chemical transformations. The structural, surface, and magnetic characteristics of the nanosized catalyst were investigated by various techniques such as transmission electron microscopy (TEM), powder X-ray diffraction (XRD), vibrating sample magnetometry (VSM), elemental analyzer (EA), thermogravimetric analysis (TGA), $N_2$ adsorption-desorption (BET and BJH) and FT-IR. The biguanide-functionalized $Fe_3O_4/SiO_2$ nanoparticles showed a superpara-magnetic property with a saturation magnetization value of 46.7 emu/g, indicating great potential for application in magnetically separation technologies. In application point of view, the prepared catalyst was found to act as an efficient recoverable nanocatalyst in nitroaldol and domino Knoevenagel condensation/Michael addition/cyclization reactions in aqueous media under mild condition. Additionally, the catalyst was reused six times without significant degradation in catalytic activity and performance.

Synthesis of Core@shell Structured CuFeS2@TiO2 Magnetic Nanomaterial and Its Application for Hydrogen Production by Methanol Aqueous Solution Photosplitting

  • Kang, Sora;Kwak, Byeong Sub;Park, Minkyu;Jeong, Kyung Mi;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2813-2817
    • /
    • 2014
  • A new magnetic semiconductor material was synthesized to enable separation after a liquid-type photocatalysis process. Core@shell-structured $CuFeS_2@TiO_2$ magnetic nanoparticles were prepared by a combination of solvothermal and wet-impregnation methods for photocatalysis applications. The materials obtained were characterized using X-ray diffraction, transmission electron microscopy, ultraviolet-visible, photoluminescence spectroscopy, Brunauer-Emmett-Teller surface area measurements, and cyclic voltammetry. This study confirmed that the light absorption of $CuFeS_2$ was shifted significantly to the visible wavelength compared to pure $TiO_2$. Moreover, the resulting hydrogen production from the photo-splitting methanol/water solution after 10 hours was more than 4 times on the core@shell structured $CuFeS_2@TiO_2$ nanocatalyst than on either pure $TiO_2$ or $CuFeS_2$.

The Effect of Cr Dosage on FePt Nanoparticle Formation

  • Won, C.;Keavney, D.J.;Divan, R.;Bader, S.D.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.182-188
    • /
    • 2006
  • The search for high-density recording materials has been one of most active and vigorous field in the field of magnetism. $FePt-L1_{0}$ nanoparticle has emerged as a potential candidate because of its high anisotropy. In this paper, we provide an overview of recent work at Argonne National Laboratory that contributes to the ongoing dialogue concerning the relation between structure and properties of the FePt nanoparticle system. In particular we discuss the ability to control structure and properties via dosing with Cr. Cr-dosed FePt films were grown via molecular beam epitaxy and annealed at $550^{\circ}C$ in an ultrahigh vacuum chamber, and were studied with the surface magneto-optic Kerr effect (SMOKE), scanning electron microscopy (SEM) and x-ray magnetic circular dichroism (XMCD). We found that small dosage of Cr helps to generate $L1_{0}$ phase FePt magnetic nanoparticles with small size, defined shape and regular spatial distribution on MgO (001) substrate. The nanostructures are ferromagnetic with high magnetic coercivity (${\sim}0.9T$) and magnetic easy axis in the desired out-of-plane orientation. We also show that controlling the lateral region where nanostructures exist is possible via artificial patterning with Cr.

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

Effects of Sheet Thickness on the Electromagnetic Wave Absorbing Characterization of Li0.375Ni0.375Zn0.25-Ferrite Composite as a Radiation Absorbent Material

  • Kim, Dong-Young;Yoon, Young-Ho;Jo, Kwan-Jun;Jung, Gil-Bong;An, Chong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.150-158
    • /
    • 2016
  • This paper reports on a study of LiNiZn-ferrite composite as a radiation absorbent material (RAM). The electromagnetic (EM) wave absorbers are composed of an EM wave absorbing material and a polymeric binder. The surface morphology, chemical composition, weight percent of the ferrite composite of the toroid sample, magnetic properties, and return loss are investigated using field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and network analyzer. For preparing the absorbing sheet, chlorinated polyethylene (CPE) is used as a polymeric binder. The EM wave absorption properties of the prepared samples were studied at 4 - 8 GHz. We can confirm the effects of the thickness of the samples for absorption properties. An absorption bandwidth of more than a 10-dB return loss shifts toward a lower frequency range along with an increase in the thickness of the absorber.