• Title/Summary/Keyword: magnet-gyro

Search Result 9, Processing Time 0.029 seconds

Design of a Troidal Type Gyro using Repulsive Power of Permanent Magnet and Coriolis Effect (영구자석의 반발력과 코리올리 효과를 이용한 트로이덜 형 자이로의 설계)

  • Shin, Hye-Ung;Jou, Sung Tak;Lee, Kyo-Beum;Han, Man Yop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.694-700
    • /
    • 2015
  • This paper deals with the design of 1-kW troidal type gyro. In general, gyro can be used as magnet bearing or flywheel energy storage device. The proposed troidal type gyro is used as a flywheel energy storage device. The gyro is capable of high-speed rotation in the air. The coriolis effect is taken into account when designing the rotor of the proposed gyro. Also the repulsive power of the permanent magnet is considered while selecting the shape and the thickness of the magnet. The neodymium is used as material of the magnets in this paper. The number of magnets are selected accordingly to reduce these torque ripples because torque ripples is an important factor while designing the gyro. The designed troidal type gyro is verified through the Finite Element Method (FEM).

Sensitivity Optimization of MEMS Gyroscope for Magnet-gyro Guidance System (자기-자이로 유도 장치를 위한 MEMS형 자이로의 민감도 최적화)

  • Lee, Inseong;Kim, Jaeyong;Jung, Eunkook;Jung, Kyunghoon;Kim, Jungmin;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • This paper presents a sensitivity optimization of a MEMS (microelectromechanical systems) gyroscope for a magnet-gyro system. The magnet-gyro system, which is a guidance system for a AGV (automatic or automated guided vehicle), uses a magnet positioning system and a yaw gyroscope. The magnet positioning system measures magnetism of a cylindrical magnet embedded on the floor, and AGV is guided by the motion direction angle calculated with the measured magnetism. If the magnet positioning system does not measure the magnetism, the AGV is guided by using angular velocity measured with the gyroscope. The gyroscope used for the magnet-gyro system is usually MEMS type. Because the MEMS gyroscope is made from the process technology in semiconductor device fabrication, it has small size, low-power and low price. However, the MEMS gyroscope has drift phenomenon caused by noise and calculation error. Precision ADC (analog to digital converter) and accurate sensitivity are needed to minimize the drift phenomenon. Therefore, this paper proposes the method of the sensitivity optimization of the MEMS gyroscope using DEAS (dynamic encoding algorithm for searches). For experiment, we used the AGV mounted with a laser navigation system which is able to measure accurate position of the AGV and compared result by the sensitivity value calculated by the proposed method with result by the sensitivity in specification of the MEMS gyroscope. In experimental results, we verified that the sensitivity value through the proposed method can calculate more accurate motion direction angle of the AGV.

Positioning Accuracy Improvement of Analog-type Magnetic Positioning System using Fuzzy Inference System (퍼지 추론 시스템을 이용한 아날로그형 자기위치 장치의 위치 정밀도 향상)

  • Kim, Jung-Min;Jung, Kyung-Hoon;Jung, Eun-Kook;Cho, Hyun-Hak;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.367-372
    • /
    • 2012
  • This paper presents a development of an analog type magnetic positioning system and its positioning accuracy improvement using fuzzy inference system. As the magnetic positioning system used on a magnet-gyro guidance system for AGV(automatic guided vehicle), it measures a position of magnet embedded in floor of the work place. The existing product of the magnetic positioning system is very expensive in Korea because it is being sold in a foreign country exclusively. Moreover, the positioning accuracy of the product is low because it uses digital type unipolar hall sensors. Hence, we developed the magnetic positioning system by ourselves and improved the positioning accuracy of the developed magnetic positioning system using fuzzy inference system. For experiment, we used the analog type magnetic positioning system which we have developed, and compared the performance of the proposed method with the performance of the existing positioning method for the magnetic positioning system. In experimental results, we verified that the proposed method improved the positioning accuracy of the magnetic positioning system.

Control of a Toroidal Type Rotor with a Magnetic Bearing Structure for the Gyro Actuator (자이로 구동기를 위한 자기베어링 구조의 토로이달 형 회전자 제어)

  • Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1703-1708
    • /
    • 2015
  • This paper deals with the position and torque control of a toroidal type rotor which has a magnetic bearing structure. The proposed magnetic bearing structure supports the rotor by the repulsive forces of permanent magnets, and has a two degree of freedom for rotor position when the rotor is rotating. Permanent magnets and coils in the stator allow for a two degree of freedom control of the rotor position and torque generation by reacting with permanent magnets of the rotor. The executed gyro actuator has a number of poles such as five-phase permanent magnet motors and 10 stator coils for the rotor position control. In this study, the verification of the stability of the magnetic bearing was conducted using the equation of motion when the rotor was rotating, and the coil current commutation method for the position control and torque generation was studied. As a result, the feasibility of the proposed structure and control was verified by simulations of Finite Element Method (FEM) and experiments using the executed gyro actuator.

Fuzzy and Proportional Controls for Driving Control of Forklift AGV (퍼지와 비례 제어를 이용한 지게차 AGV의 주행제어)

  • Kim, Jung-Min;Park, Jung-Je;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.699-705
    • /
    • 2009
  • This paper is represented to research of driving control for the forklift AGV. The related works that were studied about AGV as heavy equipment used two methods which are magnet-gyro and wire guidance for localization. However, they have weaknesses that are high cost, difficult maintenance according to change of environment. In this paper, we develop localization system through sensor fusion with laser navigation system and encoder, gyro for robustness. Also we design driving controller using fuzzy and proportional control. It considers distance and angle difference between forklift AGV and pallet for engaging work. To analyze performance of the proposed control system, we experiment in same working condition over 10 times. In the results, the average error was presented with 54.16mm between simulation of control navigation and real control navigation. Consequently, experimental result shows that the performance of proposed control system is effective.

Development of Magnet Position Device for Outdoor Magnet Guidance Vehicle (실외 자기유도 무인운반차를 위한 자기 위치측정 장치 개발)

  • Cho, Hyunhak;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.259-264
    • /
    • 2014
  • This paper is research paper on the MPD(Magnet Position Device) for the outdoor MGV(Magnet /Magnet Gyro Guidance Vehicle). Usually, MGV is used in indoor environment because of a measurement height of the magnet position device. CMPD(Commercial magnet position device) has 30 mm measurement height, so this is suitable structure in indoor environment like to a flat surface. Outdoor environment is an uneven and irregular, So Outdoor MGV must has a suspension. But CMPD is unsuitable for outdoor environment because of a collision with a surface caused by suspension. Thus, measurement height of the outdoor MPD is positively necessary more than 100 mm. So, we suggest the outdoor MPD using analog magnet hall sensor, moving average filter and Characteristic(rate of the magnet hall sensor) function of the localization. Result of the experiments, the proposed Magnet Position Device for the outdoor MGV has localization accuracy 4.31 mm, measurement height 150 mm and width 150 mm and is efficient more than CMPD.

Line Tracking Method of AGV using Sensor Fusion (센서융합을 이용한 AGV의 라인 트레킹 방법)

  • Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin;Bae, Sun-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.54-59
    • /
    • 2010
  • This paper present to study the guidance system as localization technique using sensor fusion and line tracking technique using virtual line for AGV(autonomous guided vehicle). An existing AGV could drive on decided line only. And representative guidance systems of such guidance system are magnet-gyro guidance and wired guidance. However, those have had the high cost of installation and maintenance, and the difficulty of system change according to variation of working environment. To solve such problems, we make the localization system which is fused with a laser navigation and gyro, encoder. The system is robust against noise, and flexible according to working environment through sensor fusion. For line tracking of laser navigation without wire guidance, we set the virtual line in program, and design the driving controller based on difference of angle and distance between AGV's position and decided virtual line. To experiment, we use the AGV which is made by ourselves, and experiment the line tracking repeatedly on same experimental environment. In result, maximum distance error between decided virtual line and AGV's position was less than 49.93mm, and we verified that the proposed system is efficient for line tracking of actual AGV.

Development of the Electronic compass for Automatic Correction do Deviation (自動自差修正이 가능한 電子컴퍼스의 개발에 관한 연구)

  • Ahn, Young-Wha;Shin, Hyeong-Il;Shirai, Yasuyuki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • The Electronic compass made as a pilot model in this research is comprised of a three axis magnetic sensor, an accustar clinometer, and a fiber optic gyro sensor. The results confirming the output character, performance, and the accuracy of the deviation corrects of each sensor are as follows: 1) As for the output character of the three axis magnetic sensor, the magnetic field showed a cosine curve on the X axis, a - sine curve on the Y axis, and constant figures on the Z sensor. The horizontal component H and the vertical component V of the terrestrial magnetism calculated from the output voltage were 33.2${\mu}$T and 23.95${\mu}$T respectively. 2) When the fiber optic gyro sensor is fixed on the electromotive rotation transformation and has made a clockwise rotation with the speed of 10/sec, 20/sec, and 30/sec, the relationship between the output and the rotation angle of the fiber optic gyro sensor showed proportionally constant values. 3) When the magnetic field was induced with a magnet, the deviation before the correction was significant at a high of 25. However, the deviation after the correction using Poisson correction was in the 2 range, significantly lower than before the correction. It was confirmed that automatic deviation corrects are possible with the electronic compass made as a pilot model in this research.

A Navigation Control Algorithm for Automated Guided Vehicle Based on Neural Network Sensing Prediction (신경망 예측에 기반한 AGV의 주행 알고리듬)

  • 나용균;김선효;오세영;성학경;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.428-428
    • /
    • 2000
  • A robust intelligent algorithm for AGV navigation control is presented here based on both magnetic and gyro sensors to track a reference trajectory. Since the proposed system uses an intermittent array of short magnetic tape strips, it lends itself to a very easy installation and maintenance compared to other types of positioning references such as electric wire, magnets, RF and laser beacons. The neural network is to predict the lateral deviation of the AGV in the intervals where no magnetic tape references are available. Further, the use of intelligent control ensures a robust and flexible control performance. Computer simulation of AGV control demonstrates its adequate tracking performances even where the sensor information is not available. Real experiments using Samsung AGV are also on the way for real verification

  • PDF