• Title/Summary/Keyword: magnet homogeneity

Search Result 45, Processing Time 0.021 seconds

Design of a Magnet Assembly for an NMR Based Sensor Using Finite Element Analysis

  • Cho, S.I.;Chung, C.H.;Kim, S.C.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • A magnet assembly is a critical element of a nuclear magnetic resonance(NMR) based sensor. Magnetic flux density and homogeneity are essential to its optimum performance. Geometry and magnet material properties determine the magnetic flux density and homogeneity of the assembly. This study was carried out to develop the design for a magnet assembly. A 2-D finite element model for the magnetic assembly was developed using ANSYS and evaluated the effects of adding shimming frames and steel bars in the corners of the rectangular steel cover which surrounded the magnet. The assembly was manufactured and evaluated. According to the ANSYS model, modified pole frames increased magnetic flux density by 8.3% and increased homogeneity by 83%. Addition of steel bars in the corners increased the magnetic flux density by 1%, and improved homogeneity up to three times. The difference between simulated and measured magnetic flux densities at the center point of the air gap was within 2.4%.

  • PDF

Design of high homogeneity superconducting magnet (고균등자장 발생용 초전도 마그네트의 설계)

  • Jin, Hong-Beom;Nah, Wan-Soo;Ryo, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.192-194
    • /
    • 1994
  • High homogeneity and stability are required in superconducting magnet for Magnetic Resonance Imaging. In this paper, Magnetic Field theories for the design of high homogeneity magnet are introduced and multi-sections solenoid type coils are optimzed to produce highly homogeneous field.

  • PDF

Design of Magnet Console for NMR Ripeness Sensor Using ANSYS

  • Cho, Seong-In;Chung, Chang-Ho;Kim, Seung-Chan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.528-538
    • /
    • 1996
  • A magent console is critical element since its homogeneity is essential to the performance of a nuclear magnetic resonance (NMR) based sensor. Geometry and properties of magnet materials determine the magnetic flux density and homogeneity of the console. This study is carried out to develop a design scheme of the magnet console using ANSYS to reduce the design error of the magnet console compared . To enhance the performance of the magnet console, corner steel was proposed and validated by simulation and manufactured one. The corner steel increased the magnetic flux density (B) by about 1% and enhanced homogeneity by approximately 3 times. There was about 3% difference between simulated and measured B values.

  • PDF

Design of ferromagnetic shims for an HTS NMR magnet using sequential search method

  • Yang, Hongmin;Lee, SangGap;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.39-43
    • /
    • 2021
  • This study deals with the ferromagnetic shims design based on the spherical harmonic coefficient reduction method. The design method using the sequential search method is an intuitive method and has the advantage of quickly reaching the optimal result. The study was conducted for a 400 MHz all-REBCO magnet, which had difficulty in shimming due to the problem of SCF (screening current induced field). The initial field homogeneity of the magnet was measured to be 233.76 ppm at 20 mm DSV (Diameter Spherical Volume). In order to improve the field homogeneity of the magnet, the ferromagnetic shim with a thickness of 1 mil to 11 mil was constructed by a design method in which sequential search algorithm was applied. As a result, the field homogeneity of the magnet could be significantly improved to 0.24 ppm at 20 mm DSV and 0.05 ppm at 10 mm DSV.

Optimal Design Method for an Actively Shielded MRI Superconducting Magnet (능동 차폐 MRI 초전도 자석에 대한 최적 설계 방법)

  • Lee, Kwang-Ho;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.421-430
    • /
    • 2000
  • This paper describes an optimal design method which is applied a weighted least square (WLS) method for Magnetic Resonance Imaging (MRI) system. An optimal design approach is presented for a homogeneity superconducting magnet with the superconducting active shield especially for a magnetic resonance imaging system. The WLS is used to obtain the optimal configurations using the least amount and minimum volume of conductor, exhibiting the smallest level of field inhomogeneity and resulting in the least level of stray field. The proposed model is used to design a multiple-shield configuration for a 1.5 T MRI magnet. The field homogeneity is required less than 5 gauss stray field contour within 4m axially and 3m radially from origin. The designed magnet with the actively magnetic shielding coil out of main coils is analyzed by FEM and theoretical analysis method, investigated the field homogeneity.

  • PDF

A design of multi-width HTS magnets considering both wire consumption and field homogeneity

  • Yang, Hongmin;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 2021
  • This paper presents a design methodology of high-temperature superconducting (HTS) magnets. The magnet consists of several double pancake coils with a variety of wire width. This technique, named Multi-Width, is well known to make efficient use of the superconducting wire. It is common for design of high-temperature superconducting magnets to not only reduce wire consumption used, but also consider the homogeneity of the magnetic field. In this paper, we study a design method that efficiently reduces wire usage while considering magnetic field homogeneity. The design is carried out by calculating the critical current and the critical magnetic field according to the configuration of arranging the thickness of the wire to determine the number of windings. The width of wire comprising the magnet was set to 4 - 12 mm, and the number of double pancake coils was set to an even number to consist of top-down symmetry. To verify the validity of the design, we compared the progress of the design code with a complete enumeration survey. As a case study, we designed a magnet that generates a central magnetic field of 3 T or more in a 240 mm bore in diameter. Optimality can be evaluated by weighing wire consumption and field homogeneity according to the magnet's use or user preference.

A design of actively shielded superconducting MRI magnet (능동차폐형 초전도 MRI 마그네트의 설계)

  • 진홍범;류강식;송준태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.24-29
    • /
    • 1996
  • Magnetic field theories for the design of highly homogeneous magnet are introduced and a nonlinear optimization method for the design of actively shielded superconducting magnet is presented. The presented design method can optimize both main coil and shielding coil simultaneously by setting constraints on stray field intensity at a specified distance from the magnet center. A 2-Tesla actively shielded superconducting magnet, with 90cm bore diameter, is designed using the presented method. The field homogeneity is 2ppm/30cm DSV and the 5 gauss stray field contour is within 4m axially and 3m radially from the magnet center. (author)., 7 refs., 6 figs., 3 tabs.

  • PDF

Current overshoot operation of a REBCO magnet to mitigate SCF

  • Lee, Changhyung;Hahn, Seungyong;Bang, Jeseok;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.65-69
    • /
    • 2018
  • Due to large in-field current carrying capacity and strong mechanical strength, a REBCO wire has been regarded as a viable high temperature superconductor (HTS) option for high field MRI and > 1 GHz (>23.5 T) NMR magnets. However, a REBCO magnet is well known to have an inherent problem of field inhomogeneity, so-called 'Screening Current induced magnetic Field (SCF)'. Recently, 'field shaking' and 'current overshoot operation' techniques have been successfully demonstrated to mitigate the SCF and enhance the field homogeneity by experiments. To investigate the effectiveness of current overshooting operation technique, a numerical simulation is conducted for a test REBCO magnet composed of a stack of double pancake coils using '2D edge-element magnetic field formulation' combined with 'domain homogenization' scheme. The simulation result demonstrates that an appropriate amount of current overshoot can negate the SCF. To verify the simulation results, current overshoot experiments are conducted for the REBCO magnet in liquid nitrogen. Experimental results also demonstrate the possible application of current overshoot technique to mitigate the SCF and enhance the field homogeneity.

A Design Approach for High Homogeneity Superconducting Magnet with Superconducting Active Shield (고균일 자계발생용 초전도 능동차폐 마그네트의 설계에 관한 연구)

  • Lee, K.H.;Kim, S.D.;Cho, Y.H.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.151-153
    • /
    • 1996
  • An optimal design approach is presented for high homogeneity superconducting magnet with superconducting active shield especially for use in magnetic resonance imaging system. This paper is investigated phenomena for the stray magnetic field to get a basic reduction techniques of the unwanted stray magnetic field from the magnet. The present method obtains optimal coil configuration considering constraints for magnetic field homogeneity and leakage field.

  • PDF

A Study on Prototype Hybrid (LTS/HTS) Magnet for NMR Application

  • Choi, Suk-Jin;Hwang, Young-Jin;Ko, Tae-Kuk
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.312-317
    • /
    • 2011
  • NMR over 1 GHz (23.5 T) level has difficulties in design and fabrication with only low temperature superconducting (LTS) wire because of its material characteristics such as the decay of critical current under the magnetic field. Because High temperature superconducting (HTS) tape has a good performance under the extremely high magnetic field, it has been developed for high-field magnet over 23.5 T. In this paper, the LTS magnet was made for applying magnetic fields externally and the HTS coil was designed and fabricated. The electromagnetic field analysis has been done with respect to the structure and the operating current of the LTS and HTS coil. Considering to the field homogeneity and the center field, the design parameters which is suitable for the HTS coil were found. The HTS insert coil was impregnated with epoxy resin in order to prevent the movement of winding during energizing the magnet. The hybrid magnet (LTS/HTS) magnet was fabricated and tested based on the design parameters. The experimental result shows that the LTS background magnet and the HTS insert coil can be operated stable beyond 220 A and 210 A. The final value 4.32 T at the center was acquired.