• Title/Summary/Keyword: magnesium particles

Search Result 105, Processing Time 0.03 seconds

AZ31 마그네슘 합금의 고온산화에 미치는 CaO 첨가 영향 (Effect of CaO Addition on the High-temperature Oxidation of AZ31 Magnesium Alloys)

  • 원성빈;이동복
    • 한국표면공학회지
    • /
    • 제46권2호
    • /
    • pp.80-86
    • /
    • 2013
  • Magnesium alloys of AZ31 containing (0.5, 1, 1.5) wt.% of initially added CaO particles were cast in air, and their oxidation behavior was studied at $450-650^{\circ}C$ in air. The initially added CaO particles either decomposed to dissolve in the ${\alpha}$-Mg matrix or precipitated as $Al_2Ca$ along the grain boundaries of the matrix during casting. The ignition temperatures were $565.4^{\circ}C$ for AZ31, $608.6^{\circ}C$ for AZ31+0.5 wt.%CaO, and $689.7^{\circ}C$ for AZ31+1 wt.%CaO. No ignition occurred for AZ31+1.5 wt.%CaO up to $700^{\circ}C$, displaying good oxidation resistance. The CaO-rich oxide scales that formed on the surface of the AZ31+(0.5, 1, 1.5) wt.%CaO alloys improved the oxidation resistance of AZ31 alloys.

마그네슘 분진의 열분해 및 발화온도 특성 (Characteristic of Thermal Decomposition and Ignition Temperature of Magnesium Particles)

  • 한우섭;이정석
    • 한국가스학회지
    • /
    • 제17권5호
    • /
    • pp.69-74
    • /
    • 2013
  • 본 연구에서는 Mg분진의 분진입경과 승온속도에 따른 열분해 및 발화온도 특성을 실험적으로 조사하였다. 이를 위해 시료는 평균 입경이 서로 다른 38, 142, $567{\mu}m$의 Mg분진을 사용하였다. 실험에서는 열중량분석장치(TGA)와 IEC 61241-2-1규격에 따라 제작한 자연발화온도(MIT) 실험장치를 사용하여 실시하였다. 실험 결과 퇴적 Mg에 있어서 공기중 승온속도가 증가하면 중량개시온도는 증가하였으며, 동일한 승온속도 조건에서 입경의 증가는 발화온도의 증가로 나타났다. 또한 부유 Mg분진의 최저발화온도(MIT)는 평균 입경이 증가할수록 증가하는 경향을 보였다.

Hydrogenation Properties of MgH2-CaO Composites Synthesized by Hydrogen-Induced Mechanical Alloying

  • Kim, Min Gyeom;Han, Jeong-Heum;Lee, Young-Hwan;Son, Jong-Tae;Hong, Tae Whan
    • 대한금속재료학회지
    • /
    • 제56권11호
    • /
    • pp.829-834
    • /
    • 2018
  • Although magnesium-based alloys are attractive materials for hydrogen storage applications, their activation properties, hydrogenation/dehydrogenation kinetics, thermodynamic equilibrium parameters, and degradation characteristics must be improved for practical applications. Further, magnesium poses several risks, including explosion hazard, environmental pollution, insufficient formability, and industrial damage. To overcome these problems, CaO-added Mg alloys, also called Eco-Mg (environment-conscious Mg) alloys, have been developed. In this study, $Eco-MgH_x$ composites were fabricated from Mg-CaO chips by hydrogen-induced mechanical alloying in a high-pressure atmosphere. The balls-to-chips mass ratio (BCR) was varied between a low and high value. The particles obtained were characterized by X-ray diffraction (XRD), and the absorbed hydrogen was quantified by thermogravimetric analysis. The XRD results revealed that the $MgH_2$ peaks broadened for the high BCR. Further, PSA results revealed particles size were decreased from $52{\mu}m$ to $15{\mu}m$.

Useful Corrosion - Potential of Magnesium Alloys as Implants

  • Kaya, A. Arslan;Kaya, R. Alper;Witte, Frank;Duygulu, Ozgur
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.162-167
    • /
    • 2008
  • Degradable implants have been in use for bone surgery for decades. However, degradable metal implants are one of the new research areas of biomaterials science. Magnesium has good biocompatibility due to its low toxicity, and it is a corroding, i.e. dissolvable, metal. Furthermore, magnesium is needed in human body, and naturally found in bone tissue. There have been some published reports also asserting the potential bone cell activation or bone healing effect of high magnesium ion concentrations. The classic method for achieving intertransverse process fusion involves autogenous iliac crest bone graft. Several investigations have been performed to enhance this type of autograft fusion. However, there is no research which has been undertaken to investigate the efficiency of pure magnesium particles in posterolateral spinal fusion. In this study, corrosion behavior of magnesium metal at the bone interface, the possibility of new bone cell formation and the degree of effectiveness in producing intertransverse process lumbar fusion in a sheep model have been investigated. Cortical bone screws were machined from magnesium alloy AZ31 extruded rod and implanted to hip-bones of sheep via surgery. Three months after surgery, the bone segments carrying these screws were removed from the sacrificed animals. Samples were sectioned to reveal Mg/bone interfaces and investigated using optical microscope, SEM-EDS and radiography. Optical and SEM images showed that there was a significant amount of corrosion on the magnesium screw. The elemental mapping results indicate, due to the presence of calcium and phosphorus elements, that there exists new bone formation at the interface. Furthermore, sixteen sheep were subjected to intertransverse process spinal fusions with pedicle screw fixation at various locations along their spines. Each animal was treated with 5cc autograft bone at one fusion level and 1cc magnesium+5cc autograft bone at the other. Six months after surgery, bone formation was evaluated by gross inspection and palpation, and radiological, histological, scanning electron microscopic and x-ray diffraction analyses. It may be stated that the potential for using useful corrosion of magnesium alloys in medical applications is expected to be significant.

High Temperature Oxidation Behavior of Mg-6%Al-1%Zn-1%CaO Alloys

  • Lee, Dong Bok;Kim, Min Jung
    • 한국표면공학회지
    • /
    • 제50권1호
    • /
    • pp.42-45
    • /
    • 2017
  • The magnesium-base AZ61 alloy was cast while adding 1% CaO powder into the melt. It was hot extruded, and oxidized at $550-650^{\circ}C$ in air in order to study its microstructure and oxidation behavior. Initially added CaO powder reacted with Al in the melt to $Al_2Ca$ particles that aligned along the extrusion direction. The formed $Al_2Ca$ particles increased the oxidation resistance through forming the superficial CaO scale at the upper part of the thin MgO oxide scale.

마그네슘의 금속염 환원에 의한 초미립 탄화티탄 분말 합성거동 (Synthesis and kinetic of ultrafine titanium carbide particles by Mg-thermal reduction of liquid metal chlorides)

  • 이동원;백진호;김병기
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.322-327
    • /
    • 2004
  • Ultrafine titanium carbide particles were synthesized by the reaction of liquid-magnesium and vaporized TiCl$_{4}$+C$_{x}$Cl$_{4}$(x = 1 and 2) solution. Fine titanium carbide particles with about 50 nm were successfully produced by combining Ti and C atoms released by chloride reduction of magnesium, and vacuum was then used to remove the residual phases of MgCl$_{2}$ and excess Mg. Small amounts of impurities such as O, Fe, Mg and Cl were detected in the product, but such problem can be solved by more precise process control. The lattice parameter of the product was 0.43267 nm, near the standard value. With respect to the reaction kinetics, the activation energy for the reactions of TiCl$_{4}$+C$_{2}$Cl$_{4}$and Mg was found to 69 kJ/mole, which was about half value against the use of TiCl$_{4}$+CCl$_{4}$, and such higher reactivity of the former contributed to increase the stoichiometry until the level of TiC$_{0.96}$ and decrease the free carbon content below 0.3 wt.%.

고에너지 밀링공정을 이용한 조대 마그네슘 분말의 미세화 거동 (Refinement Behavior of Coarse Magnesium Powder by High Energy Ball Milling (HEBM))

  • 송준우;김효섭;김홍물;김택수;홍순직
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.302-311
    • /
    • 2010
  • In this research, the refinement behavior of the coarse magnesium powders fabricated by gas atomization was investigated as a function of milling time using a short duration high-energy ball milling equipment, which produces fine powders by means of an ultra high-energy within a short duration. The microstructure, hardness, and formability of the powders were investigated as a function of milling time using X-ray diffraction, scanning electron microscopy, Vickers micro-hardness tester and magnetic pulsed compaction. The particle morphology of Mg powders changed from spherical particles of feed metals to irregular oval particles, then platetype particles, with increasing milling time. Due to having HCP structure, deformation occurs due to the existence of the easily breakable C-axis perpendicular to the base, resulting in producing plate-type powders. With increasing milling time, the particle size increased until 5 minutes, then decreased gradually reaching a uniform size of about 50 micrometer after 20 minutes. The relative density of the initial power was 98% before milling, and mechanically milled powder was 92~94% with increase milling time (1~5 min) then it increased to 99% after milling for 20 minutes because of the change in particle shapes.

용탕단조법으로 제조된 AZ51-xSn 마그네슘 합금의 미세파괴기구 (Microfracture Mechanism of Squeeze Cast AZ51-xSn Magnesium Alloys)

  • 김병호;도정현;이성학;박익민
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.797-810
    • /
    • 2009
  • A study was made of the effects of a Sn addition on the microstructure and microfracture mechanism of squeeze cast AZ51-xSn magnesium alloys. Microstructural observation, in situ fracture testing, and fractographic observations were conducted on these alloys to clarify the microfracture process. The microstructural analyses indicated that $Mg_2Sn$ particles as well as $Mg_{17}Al_{12}$ particles precipitated mainly along the solidification cell boundaries; the volume fraction of these hard particles increased as the amount of added Sn increased, with increased the strength. From in situ fracture observations of the AZ51-7Sn alloy, coarse precipitates located on the cell boundaries worked as easy crack propagation sites and caused abrupt intercellular fracturing. On the other hand, the overall fracture properties of the AZ51-3Sn alloy improved because crack propagation proceeded into the Mg matrix rather than into the cell boundaries as twins developed actively, as confirmed by an R-curve analysis. These findings suggest that the addition of 3~5 wt.% Sn is effective in improving both the tensile and fracture properties on the basis of well-developed twins, the blocking of crack propagation, and crack blunting.

전구체에 따른 Mg(OH)2의 저온합성에서 형상변화 (Shape Changes of Mg(OH)2 with Different Magnesium Precursors in Low Temperature)

  • 강국현;정선인;이동규
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.2049-2054
    • /
    • 2013
  • 최근 수산화마그네슘은 비독성, 비부식성 및 열적 안정성 같은 우수한 특성에 의해 다양한 분야에 적용된다. 본 연구는 황산마그네슘과 염화마그네슘 그리고 질산마그네슘을 전구체로 하고, 수산화나트륨과 암모니아수를 알카리원으로 하여 상온에서 침전법을 통해 플라워 그리고 플레이크 형의 수산화마그네슘을 합성하였다. 전구체의 종류 및 합성 변수에 따른 수산화마그네슘의 형태와 크기 영향 확인하였다. 수산화마그네슘의 형상은 마그네슘전구체와 알칼리원에 의존한다. 생성된 플라워형 입자의 평균 크기는 대략 $1{\mu}m$ 그리고 플레이크형의 입자는 20 ~ 50 nm의 크기를 갖는 것을 확인하였다. 합성된 수산화마그네슘의 특성은 XRD, FE-SEM, FT-IR, EDS, PSA 그리고 TG를 통해 확인하였다.