• Title/Summary/Keyword: macroscopic traffic flow

Search Result 37, Processing Time 0.03 seconds

TRAFFIC FLOW MODELS WITH NONLOCAL LOOKING AHEAD-BEHIND DYNAMICS

  • Lee, Yongki
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.987-1004
    • /
    • 2020
  • Motivated by the traffic flow model with Arrhenius looka-head relaxation dynamics introduced in [25], this paper proposes a traffic flow model with look ahead relaxation-behind intensification by inserting look behind intensification dynamics to the flux. Finite time shock formation conditions in the proposed model with various types of interaction potentials are identified. Several numerical experiments are performed in order to demonstrate the performance of the modified model. It is observed that, comparing to other well-known macroscopic traffic flow models, the model equipped with look ahead relaxation-behind intensification has both enhanced dispersive and smoothing effects.

Real Time Macroscopic Traffic Flow Monitoring Using Acceleration Noise (가속소음을 활용한 실시간 거시 교통류 모니터링)

  • Eom, Ki-Jong;Lee, Chung-Won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.60-66
    • /
    • 2009
  • The acceleration noise is valuable index to monitor traffic stability. However, the previous study was performed for the acceleration noise of individual vehicle. The consideration of the acceleration noise for vehicle in the network has not been studied yet. This paper proposes a new macroscopic traffic flow monitoring method based on applying network acceleration noise.

  • PDF

Traffic Flow Analysis Methodology Using the Discrete Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션을 이용한 교통 흐름 분석 방법론)

  • 이자옥;지승도
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.101-116
    • /
    • 1996
  • Increased attention has been paid in recent years to the need of traffic management for alleviating urban traffic congestion. This paper presents a discrete event modeling and simulation framework for analyzing the traffic flow. Traffic simulation models can be classified as being either microscopic and macroscopic models. The discrete event modeling and simulation technique can be basically employed to describe the macroscopic traffic simulation model. To do this, we have employed the System Entity Structure/Model Base (SES/MB) framework which integrates the dynamic-based formalism of simulation with the symbolic formalism of AI. The SES/MB framework supports to hierarchical, modular discrete event modeling and simulation environment. We also adopt the Symbolic DEVS (Discrete Event System Specification) to developed the automated analysis methodology for generating optimal signal light policy. Several simulation tests will demonstrates the techniques.

  • PDF

An Application of Sampling to Determine a Proper Rate of Probe Vehicles for Macroscopic Traffic Flow Monitoring Indices (거시교통류 모니터링 지표산출을 위한 적정 프로브차량 비율 결정에 관한 연구)

  • Shim, Jung-Suk;Heo, Hyun-Moo;Eom, Ki-Jong;Lee, Chung-Won;Ahn, Su-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2010
  • In this paper, we consider three macroscopic traffic flow monitoring indices, Travel Time Index(TTI), Acceleration Noise(AN) and Two Fluid(TF) and investigate how to determine a proper rate of probe cars for producing reliable values of these indices. For the analysis, we use classical sampling theories and provide numbers of probe rates using simulation data.

Estimating Carbon Emissions due to Freeway Incidents by Using Macroscopic Traffic Flow Models (거시적 교통류모형을 이용한 고속도로 돌발상황에 따른 탄소배출량 산정연구)

  • Son, Young Tae;Han, Kyu Jong
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.119-129
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a methodology for estimating additional carbon emissions due to freeway incidents. METHODS : As our country grows, our highway policy has mainly neglected the environmental and social sectors. However, with the formation of a national green growth keynote and an increase in the number of people interested in environmental and social issues, problems related to social issues, such as traffic accidents and congestion, and environmental issues, such as the impact of air pollution caused by exhaust gases that are emitted from highway vehicles, are beginning to be discussed. Accordingly, studies have been conducted on a variety of environmental aspects in the field of road transport, and for the quantitative calculation of greenhouse gas emissions, using various methods. However, in order to observe the effects of carbon emissions, microscopic simulations must use many difficult variables such as cost, analysis time, and ease of analysis process. In this study, additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service), and the annual additional emissions based on incidents were calculated. According to the results, congestion length and emissions tend to increase with an increase in incident clearance time, number of occupied lanes, and worsening level of service. Using this data, we analyzed accident data on the Gyeong-bu Expressway (Yang-Jae IC - Osan IC) for a year. RESULTS : Additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service) and annual additional emissions caused by accidents were calculated. CONCLUSIONS : In this study, a methodology for estimating carbon emissions due to freeway incidents was developed that incorporates macroscopic flow models. The results of the study are organized in the form of a look-Up table that calculates carbon emissions rather easily.

Analysis of Characteristics of the Dynamic Flow-Density Relation and its Application to Traffic Flow Models (동적 교통량-밀도 관계의 특성 분석과 교통류 모형으로의 응용)

  • Kim, Young-Ho;Lee, Si-Bok
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.179-201
    • /
    • 2004
  • Online traffic flow modeling is attracting more attention due to intelligent transport systems and technologies. The flow-density relation plays an important role in traffic flow modeling and provides a basic way to illustrate traffic flow behavior under different traffic flow and traffic density conditions. Until now the research effort has focused mainly on the shape of the relation. The time series of the relation has not been identified clearly, even though the time series of the relation reflects the upstream/downstream traffic conditions and should be considered in the traffic flow modeling. In this paper the flow-density relation is analyzed dynamically and interpreted as a states diagram. The dynamic flow-density relation is quantified by applying fuzzy logic. The quantified dynamic flow-density relation builds the basis for online application of a macroscopic traffic flow model. The new approach to online modeling of traffic flow applying the dynamic flow-density relation alleviates parameter calibration problems stemming from the static flow-density relation.

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Adaptive Sliding Mode Traffic Flow Control using a Deadzoned Parameter Adaptation Law for Ramp Metering and Speed Regulation

  • Jin, Xin;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2031-2042
    • /
    • 2017
  • In this paper, a novel traffic flow control method based-on ramp metering and speed regulation using an adaptive sliding mode control (ASMC) method along with a deadzoned parameter adaptation law is proposed at a stochastic macroscopic level traffic environment, where the influence of the density and speed disturbances is accounted for in the traffic dynamic equations. The goal of this paper is to design a local traffic flow controller using both ramp metering and speed regulation based on ASMC, in order to achieve the desired density and speed for the maintenance of the maximum mainline throughput against disturbances in practice. The proposed method is advantageous in that it can improve the traffic flow performance compared to the traditional methods using only ramp metering, even in the presence of ramp storage limitation and disturbances. Moreover, a prior knowledge of disturbance magnitude is not required in the process of designing the controller unlike the conventional sliding mode controller. A stability analysis is presented to show that the traffic system under the proposed traffic flow control method is guaranteed to be uniformly bounded and its ultimate bound can be adjusted to be sufficiently small in terms of deadzone. The validity of the proposed method is demonstrated under different traffic situations (i.e., different initial traffic status), in the sense that the proposed control method is capable of stabilizing traffic flow better than the previously well-known Asservissement Lineaire d'Entree Autoroutiere (ALINEA) strategy and also feedback linearization control (FLC) method.