• Title/Summary/Keyword: macrocell

Search Result 100, Processing Time 0.024 seconds

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

Joint Operation of ABS with Power Control and Derivation of an Effective ABS Ratio for LTE Hetnet Environments (LTE-A 이종망 환경에서 ABS와 Power Control의 동시적용과 ABS 비율 도출)

  • Sung, No-Hoon;Choi, Young-June;Jang, Ji-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2381-2388
    • /
    • 2015
  • It has been known that interference occurs between macrocell ans small-cell base stations in a heterogeneous network (HetNet) of LTE-A. For solving this problem, 3GPP suggested eICIC (Enhanced Inter Cell Interference Coordination) that includes ABS (Almost Blank Subframe) and power control. This paper proposes to use ABS with power control and derives an effective ABS ratio as a function of the number of users and HeNBs. Through simulation, we confirm that integration of ABS and power control can mitigate interference than using ABS only. Furthermore, we verify that an effective ABS ratio is different depending on the number of users and HeNBs.

Proposal Scheme of a D2D Communication in Smart Shipyard (스마트 조선소내 D2D 통신 기술 적용 방안 제안)

  • Kim, Su-Hyun;Lee, Seong Ro;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.12
    • /
    • pp.1261-1266
    • /
    • 2014
  • Smart shipyard, all of the business of shipyard by using a mobile application, and the rapid spread of smart equipment, the overload of infrastructure due to a variety of mobile services is expected. Because macrocell and femtecell to reduce the overloading of existing infrastructure, additional core network devices have a problem, in this paper, the efficiency of resources than the communication over the existing infrastructure smart shipyard network to improve, to apply the D2D communication technology that can reduce the load on the infrastructure. The proposed routing path plan in accordance with the transfer method and the traffic type of network configuration and D2D equipment navigation and data for applying a smart shipyard. Whether to execute the function to overload traffic in the core network can send to the optimized path was confirmed by using the state transition diagram. Smart shipyard, by applying D2D communication allow efficient traffic handling than conventional communication method.

Resource Allocation to Support QoE in Hierarchical Macrocell-Femtocell Networks (계층화된 매크로-펨토셀 망에서 QoE를 지원하기 위한 자원할당 방법)

  • Lee, Gi-Sung;Lee, Jong-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.708-715
    • /
    • 2016
  • Quality of experience (QoE) for multimedia services in macro-femtocell networks is one of the key issues for 5G mobile and wireless communications. A service management structure needs to guarantee the QoE for mobile users based on end-to-end negotiation to support service continuity. Resource management is necessary to maintain the QoE requirements of different multimedia applications, because service continuity may be impeded by delays. This paper proposes four types of resource management scheme to support consistent QoE for different multimedia services. For this purpose, a QoE structure is suggested, and a resource allocation scheme is proposed by utilizing a fixed amount of radio resources reserved for dedicated use to support QoE. Various multimedia services with different requirements (such as voice, image, and data) can be serviced simultaneously, because QoE can be provided under our proposed scheme. Simulation results show that our scheme provides better performance than a conventional scheme with respect to outage probability and total data throughput.

A Low-Complexity Algorithm for Inter-Cell Interference Coordination and User Scheduling in Downlink Heterogeneous Networks (이종 네트워크 하향링크의 셀간 간섭 조정 및 사용자 스케줄링을 위한 저복잡도 알고리즘)

  • Park, Jinhyun;Lee, Jae Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.9-17
    • /
    • 2014
  • Heterogeneous network (HetNet) is a network consisting of macrocells overlaid with small cells. In HetNet, the interference from macrocell to small cell users is a major cause of performance degradation of small cell users and enhanced inter-cell interference coordination (eICIC) is needed to mitigate the interference. Previous works on eICIC gives limited performance gain because these works focus on maximizing long-term throughput and rarely consider varying channel conditions over frames. This paper proposes a new algorithm which dynamically coordinates interference and schedules users on each frame to maximize the total utility of the network with lower computational complexity than exhaustive search. Simulation results show that the proposed algorithm achieves higher total throughput than the throughput with the conventional algorithm, and has higher fairness index than the conventional algorithm when there large number of users.

Interference Management with Cell Selection using Cell Range Expansion and ABS in Heterogeneous Network based on LTE-Advanced (LTE-Advanced 기반 이종 네트워크에서 셀 영역 확장에 대한 셀 선택과 ABS를 통한 간섭 관리 기법)

  • Moon, Sangmi;Kim, Bora;Malik, Saransh;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.39-44
    • /
    • 2013
  • Long Term Evolution (LTE) - Advanced has developed Heterogeneous Network (HetNet) that consists of a mix of macrocells and low-power nodes such as picocells to improve the system performance. Also, to encourage data offloading in HetNet, Cell Range Expansion (CRE) have been introduced. In this paper, we propose a cell selection scheme based on Signal to Interference plus Noise Ratio (SINR) for optimal offloading effect. And we manage the interference for user located in cell range expanded region using Almost Blank Subframe (ABS) with flexible ABS ratio to improve the spectrum efficiency in time domain. Simulation results show that proposed scheme can improve spectrum efficiency of macrocell and picocell user. Eventually, proposed scheme can imporve overall user performance.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.

Design and Performance Analysis of Bandwidth-Efficient Handoff Scheme in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 대역폭에 효율적인 핸드오프 기법의 설계 및 성능 분석)

  • Yoo, Seung-Beak;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.219-236
    • /
    • 2014
  • In this paper, we propose a novel Proxy Mobile IPv6 network bandwidth-efficient handoff scheme. MN are classified into slow and fast one. At first MN should be registered in the microcell for bandwidth efficient handoff scheme. microcell is overlapped to handle the overflow session request which is nested. Overflow session request in macrocell requests to go back from the boundary of the microcell to new microcell. If idle session traffic is in a cell, it is requested by the target microcell. Analysis model was developed, an existing session of the session blocking probability and forcing termination probability of the session request have improved considerably. If the total traffic load of the system is not very large, the proposed scheme has the best bandwidth efficiency and provides better quality of service (QoS) to MN without costs of a lot of processing on the system.

Optimal Cell Selection Scheme for Load Balancing in Heterogeneous Radio Access Networks (이종 무선 접속망에서의 과부하 분산을 위한 최적의 셀 선정 기법)

  • Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1102-1112
    • /
    • 2012
  • We propose a cell selection and resource allocation scheme that assigns users to nearby accessible cells in heterogeneous wireless networks consisting of macrocell, femtocells, and Wi-Fi access points, under overload situation. Given the current power level of all accessible cells nearby users, the proposed scheme finds all possible cell assignment mappings of which user should connect to which cell to maximize the number of users that the network can accommodate at the same time. We formulate the cell selection problem with heterogeneous cells into an optimization problem of binary integer programming, and compute the optimal solution. We evaluate the proposed algorithm in terms of network access failure compared to a local ad-hoc based cell selection scheme used in practical systems using network level simulations. We demonstrate that our cell selection algorithm dramatically reduces network access failure in overload situation by fully leveraging network resources evenly across heterogeneous networks. We also validate the practical feasibility in terms of computational complexity of our binary integer program by measuring the computation time with respect to the number of users.

Analysis on Interference Control in Heterogeneous Networks (이기종 네트워크에서의 간섭 제어 분석)

  • Kim, Seong-Eui;Kim, Ki-Su;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.3
    • /
    • pp.268-276
    • /
    • 2013
  • In this paper, we introduce the technologies to handle the interference in the heterogeneous network and evaluate the performance of enhanced Inter-Cell Interference Coordination (enhanced ICIC, eICIC) techniques that are being introduced in 3GPP Release 10. In the time-domain eICIC scheme, time-domain resources are scheduled to avoid the interference by using Almost Blank Subframe (ABS) and Cell Range Expansion (CRE). To mitigate the cross-tier interference between macro and femtocell, it is important to efficiently combine the ABS and CRE in heterogeneous network. Since it is hard to evaluate the total throughput of heterogeneous network numerically, we evaluate the total throughput by using system level simulation (SLS). As a result of evaluation, the throughputs of many different cases of combination of ABS and CRE are compared.