• Title/Summary/Keyword: macrocell

Search Result 100, Processing Time 0.017 seconds

Dynamic Channel Allocation in Closed-Access Small Cell Networks (폐쇄형 접속 방식의 소형셀 네트워크를 위한 동적 채널 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.50-61
    • /
    • 2014
  • Operating small cell with existing macro cell is of interest in wireless communication technology to enhance network capacity. Closed-access small cell allows the access of users registered in it and causes severe interference to nearby users connected to macrocell. We propose a dynamic channel allocation for small cells in the same building that first aim to minimize call-drop of the nearby macrocell users, and then want to reduce interferences between the small cells. Since the interference effect of small cells on the nearby macrocell users mainly depends on the small cells' position, the proposed algorithm includes a self-configuration to flexibly allocate frequency channels according to the variation of downlink quality of the macrocell users. Furthermore the algorithm is very simple and practical, which is main contribution of this paper. We observe that the proposed algorithm provides 82-94% of maximum achievable throughput.

Clustering Strategy Based on Graph Method and Power Control for Frequency Resource Management in Femtocell and Macrocell Overlaid System

  • Li, Hongjia;Xu, Xiaodong;Hu, Dan;Tao, Xiaofeng;Zhang, Ping;Ci, Song;Tang, Hui
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.664-677
    • /
    • 2011
  • In order to control interference and improve spectrum efficiency in the femtocell and macrocell overlaid system (FMOS), we propose a joint frequency bandwidth dynamic division, clustering and power control algorithm (JFCPA) for orthogonal-frequency-division-multiple access-based downlink FMOS. The overall system bandwidth is divided into three bands, and the macro-cellular coverage is divided into two areas according to the intensity of the interference from the macro base station to the femtocells, which are dynamically determined by using the JFCPA. A cluster is taken as the unit for frequency reuse among femtocells. We map the problem of clustering to the MAX k-CUT problem with the aim of eliminating the inter-femtocell collision interference, which is solved by a graph-based heuristic algorithm. Frequency bandwidth sharing or splitting between the femtocell tier and the macrocell tier is determined by a step-migration-algorithm-based power control. Simulations conducted to demonstrate the effectiveness of our proposed algorithm showed the frequency-reuse probability of the FMOS reuse band above 97.6% and at least 70% of the frequency bandwidth available for the macrocell tier, which means that the co-tier and the cross-tier interference were effectively controlled. Thus, high spectrum efficiency was achieved. The simulation results also clarified that the planning of frequency resource allocation in FMOS should take into account both the spatial density of femtocells and the interference suffered by them. Statistical results from our simulations also provide guidelines for actual FMOS planning.

A Downlink Load Control Scheme with a Dynamic Load Threshold and Virtual Coverage Management for Two-Tier Femtocell Networks

  • Kang, Chang Soon;Nguyen, Tien Dung;Kim, Junsu;Cigno, Renato Lo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2597-2615
    • /
    • 2013
  • This paper proposes a dynamic downlink load control scheme that jointly employs dynamic load threshold management and virtual coverage management schemes to reduce the degree of performance degradation due to traffic overload in two-tier femtocell networks. With the proposed scheme, the downlink load in a serving macrocell is controlled with a load threshold which is adjusted dynamically depending on the varying downlink load conditions of neighboring macrocells. In addition, traffic overloading is alleviated by virtually adjusting the coverage of the overloaded serving macrocell, based on the adjusted load threshold of the serving macrocell. Simulation results show that the proposed scheme improves the performance of two-tier femtocell networks in terms of the outage probability and sum throughput. This improvement is significantly increased with appropriate values of load thresholds and with an intermediate-level adjustment of the virtual coverage area (i.e., handover hysteresis margin: HOM). Furthermore, the proposed scheme outperforms both a previously proposed load control scheme with a static load threshold and the LTE system without a HOM adjustment.

A game theory approach for efficient power control and interference management in two-tier femtocell networks based on local gain

  • Al-Gumaei, Y. A.;Noordin, K. A.;Reza, A. W.;Dimyati, K.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2530-2547
    • /
    • 2015
  • In the recent years, femtocell technology has received a considerable attention due to the ability to provide an efficient indoor wireless coverage as well as enhanced capacity. However, under the spectrum sharing between femtocell user equipment (FUEs) and the owner of spectrum macrocell user equipment (MUEs), both may experience higher uplink interference to each other. This paper proposes a novel distributed power control algorithm for the interference management in two-tier femtocell networks. Due to the assignment of licensed radio frequency to the outdoor macrocell users, the access priority of MUEs should be higher than FUEs. In addition, the quality of service (QoS) of MUEs that is expressed in the target signal-to-interference-plus-noise ratio (SINR) must always be achieved. On the other hand, we consider an efficient QoS provisioning cost function for the low-tier FUEs. The proposed algorithm requires only local information and converges even in cases where the frontiers of available power serve the target SINRs impossible. The advantage of the algorithm is the ability to implement in a distributed manner. Simulation results show that the proposed algorithm based on our cost function provides effective resource allocation and substantial power saving as compared to the traditional algorithms.

Performance Analysis of Optimal Tracking Load Balance Scheme in Hierarchical LTE Networks (계층적 LTE 네트워크에서 최적의 트래킹 로드밸런스 기법의 성능분석)

  • Jeon, Minsu;Jeong, Jongpil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.9-21
    • /
    • 2013
  • Tracking is a process which explores user equipment (UE) in the area of tracking in terms of cells. In this paper, two tracking schemes based on macrocell-microcell tiers in hierarchical LTE networks, PMMT and IMMT, are evaluated. In this network, UE can receive a signal from macrocells and overlapping microcells, and can be called from each macrocell or microcell-tier in the PMMT. Also, the UE can be called from the combined macrocell-tier and microcell-tier in the IMMT. Finally, we analyze the optimization of load balance between marcocell-tier and microcell-tier, and an analytical model is developed to evaluate those two arrangements.

Handover Call Admission Control for Mobile Femtocells with Free-Space Optical and Macrocellular Backbone Networks

  • Chowdhury, Mostafa Zaman;Saha, Nirzhar;Chae, Sung-Hun;Jang, Yeong-Min
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 2012
  • The deployment of mobile femtocellular networks can enhance the service quality for the users inside the vehicles. The deployment of mobile femtocells generates a lot of handover calls. Also, numbers of group handover scenarios are found in mobile femtocellular network deployment. The ability to seamlessly switch between the femtocells and the macrocell networks is a key concern for femtocell network deployment. However, until now there is no effective and complete handover scheme for the mobile femtocell network deployment. Also handover between the backhaul networks is a major concern for the mobile femtocellular network deployment. In this paper, we propose handover control between the access networks for the individual handover cases. Call flows for the handover between the backhaul networks of the macrocell-to-macrocell case are proposed in this paper. We also propose the link switching for the FSO based backhaul networks. The proposed resource allocation scheme ensures the negligible handover call dropping probability as well as higher bandwidth utilization.

Dynamic Downlink Resource Management of Femtocells Using Power Control in OFDMA Networks (OFDMA 펨토셀 환경에서 전력 제어를 이용한 동적 하향링크 자원관리 방법)

  • Lee, Sang-Tae;Ahn, Chun-Soo;Shin, Ji-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.339-347
    • /
    • 2012
  • Femtocells as home base station for indoor coverage extension and wideband data service, have been studied with significant interests. When femtocell is deployed, the existing cell structural of changes causes various technical problems. In this paper, we investigate the femto-macro cell interference mitigation in OFDMA system. We propose dynamic downlink resource management scheme which adjust the transmitted power of femtocell according to the strength of received macrocell signal and allocates subcarrier to femtocells in a dynamic manner. In this way, the interference between the macrocell users and femtocells is reduced. The simulation results show that proposed scheme enhances both macrocell and femtocell throughputs.

Performance Analysis for the Handover in Mobile Communication Environment with Multilayered Cell Structure (다층셀 구조를 갖는 이동통신환경에서의 핸드오버 성능분석)

  • Lim, Seog-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.73-81
    • /
    • 2007
  • This paper analyzes the performance of the handover in an overlaid micro/macro cellular system suited for mobile communication environments. In proposed model, it is analyzed the performance of case that subscriber who move with high speed does handover to a macrocell instead of doing handover by microcell. For an easy analysis, a circle shaped cell model are assumed both in microcell and macrocell. The reservation channel scheme is adopted in microcell for a low-speed mobile while a scheme using queue is used in macrocell for a high-speed mobile. The analytic results show that the proposed scheme provides a lower handover failure relatively than in a non-overlaid cellular system with slightly increased new call blocking probability.

  • PDF

Erlang Capacity and Call Blocking Probability of CDMA Hierarchical Cellular Systems with Soft Handoff (소프트 핸드오프를 갖는 CDMA 계층구조 셀룰러 시스템의 Erlang 용량과 호 차단확률)

  • Seong, Bong-Hun;O, Hyeon-Seok;Han, Jae-Chung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.481-490
    • /
    • 2000
  • This paper analyzes interference power, Erlang capacity, the number of handoff occurrences, and call blocking probability with respect to the cell radius, the soft handoff region, and the mobile's velocity in a CDMA hierarchical cellular system. The microcell cellular system has the higher Erlang capacity than the macrocell cellular system. However, the microcell cellular system, which has a high system capacity through frequency reuse has the call blocking probability higher than macrocell cellular system. Also the interference power and the call blocking probability are decreased with the operation of soft handoff. Therefore, this paper presents the optimization of soft handoff region so as to maximize system's Erlang capacity with the low the call blocking probability according to mobile's velocity in the CDMA hierarchial cellular system.

  • PDF

A Survey of Energy Efficiency Optimization in Heterogeneous Cellular Networks

  • Abdulkafi, Ayad A.;Kiong, Tiong S.;Sileh, Ibrahim K.;Chieng, David;Ghaleb, Abdulaziz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.462-483
    • /
    • 2016
  • The research on optimization of cellular network's energy efficiency (EE) towards environmental and economic sustainability has attracted increasing attention recently. In this survey, we discuss the opportunities, trends and challenges of this challenging topic. Two major contributions are presented namely 1) survey of proposed energy efficiency metrics; 2) survey of proposed energy efficient solutions. We provide a broad overview of the state of-the-art energy efficient methods covering base station (BS) hardware design, network planning and deployment, and network management and operation stages. In order to further understand how EE is assessed and improved through the heterogeneous network (HetNet), BS's energy-awareness and several typical HetNet deployment scenarios such as macrocell-microcell and macrocell-picocell are presented. The analysis of different HetNet deployment scenarios gives insights towards a successful deployment of energy efficient cellular networks.