• Title/Summary/Keyword: machining work

Search Result 399, Processing Time 0.027 seconds

Predicting cutting forces in face milling with the orthogonal machining theory

  • Kim Kug Wean
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.13-18
    • /
    • 2005
  • This paper presents an effective cutting force model that enables us to predict the instantaneous cutting force in face milling from knowledge of the work material properties and the cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle, which is defined in the plane containing the cutting velocity vector and the chip flow vector. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and the test results.

A Study on the Monitoring Technology of Prediction for Grinding Wheel Condition (연삭 숫돌 상태의 감시 진단에 관한 연구)

  • 이전헌;강재훈;김원일;이윤경;왕덕현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.125-130
    • /
    • 1994
  • Recently,manufacturing work been transformed to small acale production from with various items to act up to user's expectation from mass production with a little items required in the past. The FMS using NC type mother machinaries has been applied actively also in domestic manufacturing line to meet thus tendancy, but there are many machining troubles occured in work process not be settled yet. Nowdays high efficiency has been required no less than high precision in grinding work for the improvement of productivity. In this study, to represent more advanced FMS can be adapted to thus situation In-process type monitoring method using AE and Current sensors is suggested to investigatethe machining condition in grinding process. As results from this experimental study, is is recoqnized well that grinding conditions and dressing point of in time can be estimated effectively using monitoring method suggested. Furthermore, surface shape of grinding wheel on voluntary point of in time can be predicted indirectly through the observation and comparison of AE signal waveform obtained as performance of continuous dressing work.

  • PDF

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Farbrication of Repeated 3D Shapes using Magnetorheological Fluid Polishing (자기유변유체 연마공정을 응용한 미세부품의 형상가공)

  • Kim Y.J.;Min B.K.;Lee S.J.;Seok J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1265-1268
    • /
    • 2005
  • Due to the increase of the need for reliable high density information storage devices, the demand for precise machining of the slider in HDD is rapidly growing. The present fabrication process of slider bears some serious problems such as low yield ratio in mass production, which is mainly caused by inefficient machining processes in shaping camber and crown on the slider. In order to increase slider yield ratio in HDD, a new systematic machining process is proposed and developed in this work. This new machining process includes the use of magnetorheological (MR) fluid, a smart polishing material generally used for ultra-fine surface finishing of micro structures. It is shown that the process proposed in this work enables to make camber and crown pattern in the scale of few tens of nanometers. Experiment results shows that the MR polishing can be also used for shaping process of micro structures.

  • PDF

Study of Micro-Supersonic Impinging Jets and Its Application to the Laser Machining (마이크로 초음속제트의 충돌유동과 레이저 가공 응용에 관한 연구)

  • Min, Seong-Kyu;Yu, Dong-Ok;Lee, Yeol;Cheong, Jo-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Characteristics of micro-sonic/supersonic axi-symmetric jet impinging on a flat plate with a pre-drilled hole were both experimentally and numerically studied, to observe the role of assist-gas jet to eject melted materials from the cut zone in the laser machining. For various Mach numbers of the nozzle and the total pressures of the assist gas, detailed impinging jet flow structures over the plate and the variations of mass flux through the pre-drilled hole were observed. It was found that the present experimental and numerical results show a good agreement, which proves the accountability of the present work. From the present study, it was also observed that the mass flow rate through the hole was closely related with the total pressure loss caused by the Mach disc on the work piece, and that supersonic nozzle could perform more efficient roles as blowing the assist-gas jet in the laser machining, as compared to sonic nozzles.

Friction and Wear Characteristics of Gray Cast Iron Surface Processed by Broaching Method (브로칭 가공된 회주철 소재 표면의 마찰 및 마모 특성)

  • Kwon, Mun-Seong;Kang, Kyeong-Hee;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.262-269
    • /
    • 2018
  • In this work the friction and wear characteristics of the gray cast iron surface processed by broaching method, which is widely used in the machinery industry, were investigated. The broaching process is mainly used for mass production because it has high dimensional accuracy and processing speed, but the defects on surface can be easily generated. In order to improve the tribological characteristics, the approach was to reduce the roughness and hardness of the surface by adding a machining process to the broaching specimen. The secondary machining process using abrasive grains produces low roughness and hardness than broaching because it has high tool accuracy and removes the work hardened surface. The friction coefficient and the wear rate were assessed using a reciprocating-type tribotester to analyze the effects of surface finishing on the tribological properties. The friction tests were conducted under dry and lubricated conditions. The test results showed that the reduction of surface roughness and hardness through secondary machining process in lubricated condition improved the friction and wear characteristics. The reason why the same results did not appear in a dry condition was that wear occurred more rapidly than in lubricated condition. Thus, the positive effect of roughness and hardness of the surface obtained through the secondary machining process was not observed.

A Study on Machining Variable of centerless Grinding using for Ferrule Machining (페룰 가공용 무심연삭기의 가공변수에 관한 연구)

  • 박봉진;이은상;최헌종;이석우;조순주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • This paper compared the surface roughness with variables before development of centerless grinding using far ferrule machining. In this paper, theoretical surface roughness is obtained from variables such as mesh number, rate of concentration of grinding wheel, wheel rotation of work-piece etc., and optimum condition of machining is selected. For satisfaction the technical side and economical side, centerless grinding using fur ferrule machining should be designed more than #600, 18.8% rate of concentration of grinding wheel, 1440rpm wheel rotation outwork-piece.

  • PDF

A Study on Surface Roughness of Al alloy 7075 to Cutting depth in High-speed Machining (고속가공의 절삭 깊이에 따른 알루미늄 합금 7075의 표면 거칠기에 대한 연구)

  • Park, Eun-sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.29-35
    • /
    • 2010
  • Recently the industry high-speed machining has been applied to the automotive, aircraft, electronics parts machining because the effect of cost savings, machining time reduction and productivity improvement. In this study recently the aircraft structural aluminum alloy 7075 used in cutting the ball end-mill on the surface roughness terms most affect the parameters of the spindle speed and feed rate on the surface roughness of the work-piece according to the cutting depth is to investigate. Cutting depth at 0.3 mm has the lowest surface roughness.

Investigation of ultraprecision machining characteristics by molecular statics simulation method (분자정역학 기법을 이용한 초미세 절삭특성에 관한 고찰)

  • 정구현;이성창;김대은
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.122-129
    • /
    • 1997
  • Machining technology has emerged to the point of performing atomic-scale fabrication. In tail paper atomic-scale machining characteristics are investigated by using Molecular Statics simulation method. The cutting model used in this work simulates machining with tools such as an AFM. It is shown that built-up edge formation and cutting forces depend on tool tip geometry. Also, the material flow during cutting is shown for various cutting conditions such as depth of cut, rake angle, and edge radius of tool.

  • PDF

High Speed Machining Considering Efficient Manual Finishing Part I: Phase Shift and Runout Affecting Surface Integrity (고속 가공을 이용한 금형의 효율적 생산 제 1 부: 이송 위상차와 런아웃이 가공면에 미치는 영향)

  • Kim, Min-Tae;Je, Sung-Uk;Lee, Hae-Sung;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.30-37
    • /
    • 2006
  • In this work, the surface integrity smoothened with a ball end mill was investigated. Because surface integrity mainly affects the manual finishing process, $RV_{AM}$(Remaining Volume After Machining) was introduced, and it gives the relation between machining process and finishing process. Runout and phase shift which adversely affect surface integrity were considered in the generation of surface topography. Cutting points in ball end milling were identified with positional vectors and a set of vectors which have the minimum height in unit area was selected for the generation of surface and $RV_{AM}$. $RV_{AM}$ variation according to runout and phase shift was calculated and experimentally verified in proposed HSM conditions for mold machining. From the simulations and the experiments, a desirable High Speed Machining condition was suggested.