• Title/Summary/Keyword: machining tolerance

Search Result 104, Processing Time 0.034 seconds

Roundness and Dimensional Accuracy Analysis using SNCM616 Alloy Still (SNCM616 합금강을 이용한 진원도와 치수정밀도 분석)

  • Choi, Chul-Woong;Kim, Jin-Su;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.599-606
    • /
    • 2019
  • In this study, it was aimed to find the optimal cutting conditions by measuring and analyzing the dimensional accuracy of SNCM 616 alloy steel, which is commonly used in industry, by precision hole machining using Ø25 mm and 8-blade reamer in CNC-HBM to be. As a result of the roundness and dimensional accuracy, it was found that the spindle speed had a significant effect on the dimensional tolerance value. Optimum cutting conditions are spindle speed 25 rpm and feed rate 20 mm / min.

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

A Study on the Detection of Cutter Runout Magnitude in Milling (밀링가공에서의 커더 런 아웃량 검출에 관한 연구)

  • Hwang, J.;Chung, E. S.;Lee, K. Y.;Shin, S. C.;Nam-Gung, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

An Effect on the Running Accuracy of the Perpendicularity Error in the Spindle System Supported with Externally-Pressurized Air Bearing (외부가압 공기 베어링 지지 스핀들 시스템에서 직각도 오차가 운전 정밀도에 미치는 영향)

  • 고정석;김경웅
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.257-264
    • /
    • 1999
  • Recently as electronics and semi-conductor industry develop, ultra-precision machine tools that use air-spindle with externally pressurized air bearing appear in need of ultra-precision products which demand high precision property. Effects of air compressibility absorbs the vibration of shaft, this is called averaging effect, however, the higher running accuracy is demanded by degrees, the more important factor is machining errors that affect running accuracy of shaft. Actually, it would be very important in the view points of running accuracy to understand effects of machining errors on the running accuracy of the spindle system quantitatively to design and manufacture precision spindle system in the aspect that efficiency in manufacturing spindle system and performance in operation. So fu, there are some researches on the effects that machining error affect running accuracy. However, because these researches deal with one bearing of spindle system, these results aren't enough to explain how much machining errors affect running accuracy in the typical spindle system overall. In this study, we investigate the effects of the perpendicularity error of bearing and shaft on running accuracy of spindle system that consists of journal and thrust bearing theoretically, and suggest design guideline about shape tolerances.

A Study on the Feeding System of Centerless Grinder for Machining the Ferrule (페룰가공용 무심연삭기 이송계 개발)

  • 박천홍;황주호;조순주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.65-69
    • /
    • 2002
  • In order to practicalize high precision centerless grinder for machining the ferrule, its feeding system is designed and tested. For satisfying the desired diametric tolerance and cylindricity of the ferrule, the feeding system is designed to have relatively high axial stiffness of 600 N/$\mu\textrm{m}$, high angular motion accuracy of 0.5 arcsec/mm in yaw direction and minimum resolution of 0.05 $\mu\textrm{m}$. A prototype of feeding system is built up with hydrostatic guideway and ballscrew. A linear scale with 0.05 $\mu\textrm{m}$ of resolution is used for position feedback. Experimental results show that the feeding system has the infinity of axial stiffness within the range of 1000 N and 0.3 arcsec/mm of yawing error. Also the feeding system shows obvious step response against 0.05 $\mu\textrm{m}$/step command without the lost motion or backlash. Although the vertical stiffness is reduced to 440 N/$\mu\textrm{m}$ by the elastic deformation of rail, it is good enough to use for machining the ferrule. From above, it is confirmed that the feeding system is applicable to centerless grinder for machining the ferrule.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Adaptive Feedrate Neuro-Control for High Precision and High Speed Machining (고정밀 고속가공을 위한 신경망 이송속도 적응제어)

  • Lee, Seung-Soo;Ha, Soo-Young;Jeon, Gi-Joon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.35-42
    • /
    • 1998
  • Finding a technique to achieve high machining precision and high productivity is an important issue for CNC machining. One of the solutions to meet better performance of machining is feedrate control. In this paper we present an adaptive feedrate neuro-control method for high precision and high speed machining. The adaptive neuro-control architecture consists of a neural network identifier(NNI) and an iterative learning control algorithm with inversion of the NNI. The NNI is an identifier for the nonlinear characteristics of feedrate and contour error, which is utilized in iterative learning for adaptive feedrate control with specified contour error tolerance. The proposed neuro-control method has been successfully evaluated for machining circular, corner and involute contours by computer simulations.

  • PDF

Parallel Generation of NC Tool Paths for Subdivision Surfaces

  • Dai Junfu;Wang Huawei;Qin Kaihuai
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • The subdivision surface is the limit of recursively refined polyhedral mesh. It is quite intuitive that the multi-resolution feature can be utilized to simplify generation of NC (Numerical Control) tool paths for rough machining. In this paper, a new method of parallel NC tool path generation for subdivision surfaces is presented. The basic idea of the method includes two steps: first, extending G-Buffer to a strip buffer (called S-Buffer) by dividing the working area into strips to generate NC tool paths for objects of large size; second, generating NC tool paths by parallel implementation of S-Buffer based on MPI (Message Passing Interface). Moreover, the recursion depth of the surface can be estimated for a user-specified error tolerance, so we substitute the polyhedral mesh for the limit surface during rough machining. Furthermore, we exploit the locality of S-Buffer and develop a dynamic division and load-balanced strategy to effectively parallelize S-Buffer.

A Tessellation of a Planar Polynomial Curve and Its Offset (평면곡선과 오프셋곡선의 점열화)

  • Ju, S.Y.;Chu, H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.158-163
    • /
    • 2004
  • Curve tessellation, which generates a sequence of points from a curve, is very important for curve rendering on a computer screen and for NC machining. For the most case the sequence of discrete points is used rather than a continuous curve. This paper deals with a method of tessellation by calculating the maximal deviation of a curve. The maximal deviation condition is introduced to find the point with the maximal deviation. Our approach has two merits. One is that it guarantees satisfaction of a given tolerance, and the other is that it can be applied in not only a polynomial curve but its offset. Especially the point sequence generated from an original curve can cause over-cutting in NC machining. This problem can be solved by using the point sequence generated from the offset curve. The proposed method can be applied for high-accuracy curve tessellation and NC tool-path generation.

Realtime control algorithm and hardware for machining curved surfaces (실시간 곡면 가공에 관한 제어 알고리즘 및 하드웨어 연구)

  • 정승권;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1320-1323
    • /
    • 1996
  • This paper describes an interpolation method for a parametric surface. A parametric surface is approximated to triangular mesh surfaces and then the basic paths are achieved. As the generated path is a series of linear segments, this algorithm can be easily adapted to general NC controllers. The generated paths have minimal transfer length and are gouge-free within the approximation tolerance. The problems, induced when the paths are represented by linear segments, are overcome without making any path deviation by this algorithm. This algorithm saves machining time by eliminating overdetermined tool paths and keeping the desired average feedrate, which improve productivity and lead to lower production costs.

  • PDF