• 제목/요약/키워드: machining surface

검색결과 1,784건 처리시간 0.04초

주축증속기를 이용한 금형강의 고속절삭에 관한 연구 (A Study on the High-Speed Machining of Die/Mold Material Using a Spindle-Speeder)

  • 이용철;강명창;이득우;김정석
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.81-87
    • /
    • 1998
  • High-speed machining is one of the most effective technologies to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and molds. In this paper, high-speed machining for HP-4 die material was carried out with a coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show various characteristics in different cutting conditions. Especially, the surface roughness of the workpiece depends largely on pick feed and feed-per-revolution of the ball endmill. In the condition where pick feed and feed-per-revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

전체면 접촉 절삭공구를 이용한 장구형 웜나사 치형가공 연구 (Double Enveloping Worm Thread Tooth Machining Study using Full Face Contact Cutting Tool)

  • 강신준;김용환
    • 소성∙가공
    • /
    • 제29권3호
    • /
    • pp.144-150
    • /
    • 2020
  • In this paper, we propose the generation of a double enveloping worm thread profile with a non-developable ruled surface. Thread surface machining cuts all the way from the tip to the tooth root at one time, like full-face contact machining, rather than cutting several times like point machining. This cutting can reduce the cutting duration and achieve the smooth surface that does not require a grinding process for the threaded surface. The mathematical model of the cutting process was developed from theoretical equations, and the tooth surface was generated using two parameters and modeled in the CATIA using the generated Excel data. Additionally, the machining process of the worm was simulated in a numerical control simulation system. To verify the validity of the proposed method, the deviation between the modeling and the workpiece was measured using a 3D measuring machine.

금형강의 고속가공시 절삭력 및 표면조도의 특성 (Characteristics of Cutting Force and Surface Roughness in the High-Speed Machining of Die Material)

  • 손창수;강명창;이용철;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.36-40
    • /
    • 1996
  • The high-speed machining is one of the most effective technology to improve productivity. Because of the high speed and high feedrate, high-speed machining can give great advantages for the machining of dies and moulds. In this paper, high-speed milling for HP-4 die material was carried out with coated tungsten carbide ball endmill. In the high-speed machining, the cutting force and surface roughness of workpiece show very various characteristics at different cutting conditions. Especially surface roughness of workpiece depends largely on pick feed and feed per revolution of ball endmill. In the condition that pick feed and feed per revolution are equal, better surface roughness is measured. By obtaining good surface roughness at high speed, efficiency of machining can be increased.

  • PDF

복합 사이클 코드 지령 방식의 다중곡면 가공을 위한 실시간 곡면 보간기 (Real-Time Surface Interpolator for Multiple Surface Machining Based on a Surface Cycle Command)

  • 구태훈;지성철
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.97-107
    • /
    • 2007
  • The present CNC machining system if without any CAM software has been limited to 2D or 2.5D plane cut using lines, arcs and curves. If the CNC is equipped with a surface interpolation module and a surface reorganizing module inside it, we can easily try 3D surface machining without aid of CAM software. The existing NURBS surface interpolator is simple and direct to use for a unit surface. However, it enables only machining of each reference surface individually even when machining a simple composite surface. In this paper, we propose a method which can unify and reorganize various reference surfaces with a newly defined NURBS surface cycle command: a multi-repetitive cycle command such as in a CNC turning center. We also introduce a reorganizing rule for reference surfaces using NURBS properties. The usefulness of the proposed method is verified through computer simulation.

자유곡면 NC 절삭가공시간 예측 (Estimation of Sculptured Surface NC Machining Time)

  • 허은영;김보현;김동원
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.254-261
    • /
    • 2003
  • In mold and die shops, NC machining process mainly affects the quality of the machined surface and the manufacturing time of molds and dies. The estimation of NC machining time is a prerequisite to measure the machining productivity and to generate a process schedule, which generally includes the process sequence and the completion time of each process. It is required to take into account dynamic characteristics in the estimation, such as the ac/deceleration of NC machine controllers. Intensive observations at start and end points of NC blocks show that a minimum feedrate, a key variable in a machining time model, has a close relation to a block distance, an angle between blocks, and a command feedrate. Thus, this study addresses regression models for the minimum feedrate estimation on short and long NC blocks considering these parameters. Furthermore, machining time estimation models by the four types of feedrate behaviors are suggested based on the estimated minimum feedrate. To show the validity of the proposed machining time model, the study compares the estimated with the actual machining time in the sculptured surface machining of several mold dies.

마찰가공에 있어서의 분위기 영향에 관한 연구 제 1장

  • 손명완
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.338-346
    • /
    • 1981
  • Honing, lapping, polishing and superfinishing are applied for a precision machining to finish the metal surface, but these precision machining are micro-cutting by hard and micro-abrasive grains. Frictional machining is the new method to finish mirrorlike surface without using those abrasive grains. The frictional machining produces high pressure and high temperature instantly by compressing a tool material against the metal surface in sliding motion. The metal surface is given plastic deformation and plastic flow by the above mentioned frictional motion, but the surface roughness of the metal surface is influenced by physical and chemical reaction in surrounding atmosphere. Therefore, the atmosphere around the metal optimum atmosphere in the frictional machining. The part 1 of the study was performed in liquid atmospheres. Diesel oil, lubricant, grease, lard oil, bean oil and cutting fluid were used as such atmospheres. Medium carbon steel SM 50 C was used as a workpiece and ceramic tip was applied as a frictional tool. The result of the experiment showed characteristic machining conditions to generate the best surface roughness in each atmospheres.

볼엔드밀 절삭에서 전해복합에 의한 표면거칠기 특성 (Characteristics of Surface Roughness by Compounding Electrolytic Machining in Ball End Milling)

  • 이영표;박규열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.959-962
    • /
    • 2000
  • A new method compounding the electrolytic machining with ball end milling process to improve machined surface toughness was examined. From this study, it was confirmed that much smaller cutting force and finer surface roughness can be obtained in a certain condition of ball end milling and electrolytic machining conditions.

  • PDF

필렛 엔드밀을 이용한 자유곡면 황삭가공 시간단축 (Machining Time Reduction in Rough Machining of Sculptured Surface using Filleted End Mill)

  • 신동혁;김종일;김병희;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.15-19
    • /
    • 1996
  • The cusp height in ball end milling, flat end milling and filleted end milling according to various surface inclination angle was calculated. The calculation result shows that, for each kind of tools, there exists certain range of inclination angle in which cusp height characteristics favorable. From machining time calculation, filleted end mill found to be superior to flat end mill in rough machining of sculptured surface.

  • PDF

반도체 플라즈마 에칭 상부 전극의 표면 품질 형성에 관한 가공법 평가 (Evaluation of the Machining Method on the Formation of Surface Quality of Upper Electrode for Semiconductor Plasma Etch Process)

  • 이은영;김문기
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.1-5
    • /
    • 2019
  • This study has been focused on properties of surface technology for large diameter upper electrode using in high density plasma process as like semi-conductor manufacturing process. The experimental studies have been carried out to get mirror surface for upper electrode. For a formation of high surface quality upper electrode, single crystal silicon upper electrode has been mechanical and chemical machining worked. Mechanical machining work of the upper electrode is carried out with varying mesh type using diamond wheel. In case of chemical machining work, upper electrode surface roughness was observed to be strongly dependent upon the etchant. The different surface roughness characteristics were observed according to etchant. The machining result of the surface roughness and surface morphology have been analyzed by use of surface roughness tester, laser microscope and ICP-MS.

CAM 소프트웨어를 활용한 완만한 구배면의 효율적인 가공에 관한 연구 (A study on efficient machining of smooth drafting surface using CAM software)

  • 박희수;최계광
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.19-23
    • /
    • 2019
  • In the mold industry, CAM software has been introduced to solve the impossible or time-consuming part of the mold industry because the increase in labor costs, the drop in mold price, and the short delivery time are tasks to be solved not only in the manufacturing industry but also in the mold industry as a whole. In order to reduce the processing time and improve the surface roughness, we have been conducting various researches for efficient machining. This study was carried out to compare the ball end mill and radius end mill tools with the Power mill software and NC brain software under the same conditions and to find out the most efficient method of machining the smooth drafting surface and improving the surface roughness. (1) By machining the smooth drafting surface using radius end mill, the machining time is 23.7% faster than when using ball end mill. (2) Surface roughness when machined with radius end mill is smoother than when using ball end mill. Based on these results, it can not be applied to all shapes, but if it is a relatively wide and simple gradient shape, the raster machining method using radius end mill can be more effective in terms of delivery and quality than machining with ball end mill.