• Title/Summary/Keyword: machining process

Search Result 2,139, Processing Time 0.027 seconds

Analysis of Thermal Behavior and Temperature Estimation by using an Observer in Drilling Processes (드릴링 공정의 열거동 해석과 관측기를 이용한 온도 추정법)

  • Kim, Tae-Hoon;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1499-1507
    • /
    • 2003
  • Physical importance of cutting temperatures has long been recognized. Cutting temperatures have strongly influenced both the tool life and the metallurgical state of machined surfaces. Temperatures in drilling processes are particularly important, because chips remain in contact with the tool for a relatively long time in a hole. Tool temperatures tend to be higher in drilling processes than in other in machining processes. This paper concerns with modeling of thermal behaviors in drilling processes as well as estimation of the cutting temperature distribution based on remote temperature measurements. One- and two-dimensional estimation problems are proposed to analyze drilling temperatures. The proposed thermal models are compared with solutions of finite element methods. Observer algorithms are developed to solve inverse heat conduction problems. In order to apply the estimation of cutting temperatures, approximation methods are proposed by using the solution of the finite element method. In two-dimensional analysis, a moving heat source according to feedrate of the drilling process is regarded as a fixed heat source with respect to the drilling location. Simulation results confirm the application of the proposed methods.

High Speed Milling of Titanium Alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Chen, Ming;Lee, Young-Moon;Yang, Seung-Han;Jang, Seung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.34-39
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. The chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number of shear ribbons and bigger shear angle than that at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability mot depression of temperature increment anti-fatigability as well as surface roughness. The burrs always exist both at low cutting speed and at high cutting speed. So the deburring process should be arranged for milling titanium alloy in my case.

A Study on the Tool Wear and Surface Roughness in Cutting Processes for a Neural-Network-Based Remote Monitoring system (신경회로망을 이용한 원격모니터링을 위한 가공공정의 공구마모와 표면조도에 관한 연구)

  • Kwon, Jung-Hee;Jang, U-Il;Jeong, Seong-Hyun;Kim, Do-Un;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • The tool wear and failure in automatic production system directly influences the quality and productivity of a product, thus it is essential to monitor the tool state in real time. For such purpose, an ART2-based remote monitoring system has been developed to predict the appropriate tool change time in accordance with the tool wear, and this study aims to experimently find the relationship between the tool wear and the monitoring signals in cutting processes. Also, the roughness of workpiece according to the wool wear is examined. Here, the tool wear is indirectly monitored by signals from a vibration senor attached to a machining center. and the wear dimension is measured by a microscope at the start, midways and the end of a cutting process. A series of experiments are carried out with various feedrates and spindle speeds, and the results show that the sensor signal properly represents the degree of wear of a tool being used, and the roughnesses measured has direct relation with the tool wear dimension. Thus, it is concluded that the monitoring signals from the vibration sensor can be used as a useful measure for the tool wear monitoring.

Design and Analysis of Lorentz Force-type Magnetic Bearing Based on High Precision and Low Power Consumption

  • Xu, Guofeng;Cai, Yuanwen;Ren, Yuan;Xin, Chaojun;Fan, Yahong;Hu, Dengliang
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2017
  • Magnetically suspended control & sensitive gyroscope (MSCSG) is a novel type of gyroscope with the integration of attitude control and attitude angular measurement. To improve the precision and reduce the power consumption of Lorentz Force-type Magnetic Bearing (LFMB), the air gap flux density distribution of LFMB has been studied. The uniformity of air gap flux density is defined to qualify the uniform degree of the air gap flux density distribution. Considering the consumption, the average value of flux density is defined as well. Some optimal designs and analyses of LFMB are carried out by finite element simulation. The strength of the permanent magnet is taken into consideration during the machining process. To verify the design and simulation, a high-precision instrument is employed to measure the 3-dimensional magnetic flux density of LFMB. After measurement and calculation, the uniform degree of magnetic flux density distribution reaches 0.978 and the average value of the flux density is 0.482T. Experimental results show that the optimal design is effective and some useful advice can be obtained for further research.

A Study on Management System for Improving of Equipment Productivity in Injection Machining Process (사출가공공정에서 설비생산성 향상을 위한 관리체계에 대한 연구)

  • Park, Jun-Byung;Bae, Young-Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.219-226
    • /
    • 2017
  • This study investigates application cases of facility management system model for enhancing facility productivity of industry filed around medium and small facility processing companies and finds the inefficiency of the existing management model. Following items are researched to seek out methods and measures to maximize facility productivity through empirical analysis by exploring and establishing a new management model. First, the empirical analysis, it is found that the overall equipment efficiency index used for facility productivity management in the companies has a difficulty being used as the index for it in actual medium-small processing companies. Second, a new facility management system model applying standard cycle time is suggested among facility management index system to measure facility productivity. Third, the empirical analysis is used to verify that developed facility management system model is a useful method to manage the facility productivity by applying the model to actual medium-small processing companies. Finally, it is necessary to implement comparison analysis on whether actual productivity enhancement induces a distinctly different result by using a new facility management index system model to be inhibited in this study.

Current Status and Technical Issues of Ultra-precision Machine Tools (초정밀 가공기의 개발 동향 및 기술적 이슈)

  • Oh, Jeong Seok;Kim, Chang-Ju;Park, Chun Hong;Choi, Young Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Diffractive optical elements (DOEs) - in general a complex pattern of micro- and nano-scale structures - can modulate and transform light in a predetermined way. Their importance is being increased nowadays because they can be designed to handle a number of simultaneous tasks. In view point of machining DOEs, it is a big challenge to fabricate micro- and nano-scale structures on a free-form surfaces. In this paper, the state-of-the-art of the ultra-precision machine tools is reviewed. Also some technical issues which determine the machine tool accuracy are discussed.

An Algorithm for Automatic Generation of Dimension and Tolerance Charts (치수/공차표의 자동생성 알고리듬)

  • Jung, Jong-In;Kim, Kwang-Soo;Choi, Hoo-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • Determination of operational dimensions and tolerances is complex if there exist inconsistencies between operational and design specifications. Dimension and tolerance charts (D&T charts) have been used to establish the relationships among operational dimensions in complex machining. This chart proves that individual operations can be harmonized when they are interconnected. However, it is hard to generate the chart manually. Because operational dimensions and tolerances must meet the design specifications, the dimensions and tolerances of interconnected operations have to be verified serially for economical operations. In this paper, the chart is automatically generated from the interconnected operations. More importantly, all operational dimensions and tolerances displayed in the chart have been verified by using LP to meet the design specifications. Finally, the chart is converted to an operational routing sheet that contains a detailed process plan along with cutting speed, feed rate, and operational references based on material hardness, surface finish, and tool nose radius.

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

Appling of Force Control of the Robotic Sweeping Machine for Grinding (연마작업을 위한 로봇형 연마기의 힘제어 적용)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.276-281
    • /
    • 2014
  • In this research, we describe a force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human. To aim to build automatic vacuum system robotic force control was gripping the grinding tool, the present study we examined the adaptability to the polishing process to understand the characteristics of the control system feedback signal obtained from the force sensor mainly. Furthermore, as a field, which holds the key to the commercialization, I went ahead with the application to robotic sweeping machine. As a result, the final sweeping utilizing a robot machine to obtain a very good grinded surface was revealed.

DLC Coating Effect of WC Core Surface Roughness for Glass Molding Lens (Glass Lens 성형용 WC Core 표면조도의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Wha;Lee, Dong-Gill;Kim, Sang-Suk;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.487-488
    • /
    • 2006
  • As DLC coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research work, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass which is to be used for mobile phone module having 2 megapixel and $2.5{\times}$ zoom, and mold core (WC) was manufactured having performed ultra-precision machining and effects of DLC coating on shape accuracy(P-V) of mold core and surface roughness(Ra) as well were measured and evaluated.

  • PDF