• Title/Summary/Keyword: machinery house

Search Result 104, Processing Time 0.049 seconds

The Effect of Machinery House Location on the Stability of High Efficiency Gantry Crane (기계실 위치 변화가 고효율 갠트리 크레인의 안정성에 미치는 영향 분석)

  • Lee S.W.;Han G.J.;Shim J.J.;Han D.S.;Gwon S.G.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1605-1608
    • /
    • 2005
  • This study was carried out to analyze the effect of machinery house location on the stability of high efficiency gantry crane which can improve the productivity of the container transportation wok by reducing cycle time. The wind load was evaluated according to 'Load Criteria of Building Structures' enacted by the ministry of construction & transportation. The uplift forces of high efficiency gantry crane under this wind load were calculated by analyzing reaction forces at each supporting point. And variation of reaction forces at each supporting point was analyzed according to machinery house location.

  • PDF

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

Energy Saving System of the Open Cow-house with Aluminum Mesh Curtain and Two-stage Subdivided Fog System (알루미늄메쉬커튼과 2류체 포그시스템을 적용한 개방형축사의 에너지 절감시스템에 관한 연구)

  • Kim, Won-Kyung;Kang, Min-Woo;Yang, Ji-Woong;Lee, Eun-Suk;Shin, Hong-Gun;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1075-1080
    • /
    • 2020
  • The control on temperature and humidity on the cow-house is essential to assure production efficiency and the control on disease of cows. Fog system and screen fence are typical methods to drop the temperature inside of cow-house during the summer season. This study focused on the change in temperature and humidity under the condition of application of those methods. The results indicate that the installation of atomizer and insulation curtain cause decrease in temperature and increase in humidity. However, Using both of methods at the same time doesn't make any additional meaningful effects on temperature and humidity.

DEVELOPMENT OF AN AUTOMATIC ENVIRONMENTAL CONTROL SYSTEM FOR LOW TEMPERATURE STORAGE HOUSE USING INTERNET

  • Chung, H.;Yun, H.S.;Lee, W.O.;Lee, K.H.;Cho, Y.K.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.676-683
    • /
    • 2000
  • For high quality storage of agricultural products, temperature, humidity and gas conditions in a storage house should be controlled properly. But most of the low temperature storage house is depending on temperature control. This study aimed to develop an automatic control system for low temperature storage house that can control storage conditions such as temperature, humidity and $CO_2$ gas concentration. The developed system alarms the user, by telephone or beeper, when abnormal condition has occurred. The farmer can also monitor the inside condition of warehouse in his residence, by Internet. From the results of the performance test, the temperature and relative humidity in the warehouse is controlled within the range of ${\pm}0.5^{circ}C$ and ${\pm}2%$, respectively.

  • PDF

A Fundamental Study for Development of Unglazed Transpired Collector Control System in Windowless Pig House (무창돈사 내 무창기공형 집열기 제어 시스템 개발을 위한 기초적 연구)

  • Moon, Byeong Eun;Kim, Hee Tae;Kim, Jong Goo;Ryou, Young Sun;Kim, Hyeon Tae
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.175-185
    • /
    • 2016
  • In this study, manufactured experimental pig house (two pig house) and compared the changes in internal temperature and energy depending on the application of UTC control system for their utilizing of them as basic data for maintaining proper conditions for feeding environment and reducing heating energy depending on the UTC control system and program development, prior to applying the UTC system into pig house, representative agricultural facility. The control system ranges T1~T4 which is made to control a total of five output signals O1~O5 in the way of On/Off by using the algorithms of the program after measuring temperature scored 4 of total. Temperature setting was controlled with 28.0℃ in experimental pig house and 34.0℃ in UTC plenum, and output signal was controlled by comparing it with the measured temperature. During 3 days, the maximum temperature were measured at an average 31.8℃ when operated the control system in pig house. At the same time, the maximum temperature were measured 36.6℃ in comparison pig house, it was low temperature at 4.8℃ in experimental pig house than comparison pig house. Also, UTC plenum temperature was showed that rose at an average 50.5℃ by operation of the control program.

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.