• 제목/요약/키워드: machine-tool spindle

검색결과 388건 처리시간 0.03초

공작기계 주축계 열적거동에 관한 연구 (A Study on the Thermal Behaviro of Machine Tool Spindle System)

  • 김종관
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.28-34
    • /
    • 1999
  • According to the development of tool material and the improvement of machinability of cutting material like aluminium alloy, the higher spindle speed is needed. However, the higher speed causes the heat generation of bearings, the deformation of spindle unit parts, and the rotational accuracy of spindle to be worse. Therefore, it is essential to analyze and control the heat generation and the thermal behavior of spindle unit in order to have higher speed and better rotational accuracy. This paper shows the analogy between the analyzation of heat generation and thermal behavior of high speed spindle system by finite element method and the test results of actual temperature rise through running test, and shows the necessity of cooling the spindle and inner ring side of bearings for the thermal balance of high speed spindle system.

  • PDF

다구찌 방법을 이용한 고속주축의 강성 개선 (Improvement of a Stiffness for High-Speed Spindle Using the Taguchi Method)

  • 임정숙;정원지;이춘만;이정환
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.127-133
    • /
    • 2007
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. To improve the competition power of price to quality, spindle design is very important. Because it possesses over 10 percent of machine tool's price. The latest machine tools have rotational frequency and excellent about might and precision cutting. So it requires static and dynamic strength in the load aspect. In conclusion, the deformation of the spindle end have to extremely small displacement in static and dynamic load. In this study, On the assumption that the bearings that are supporting 24,000rpm high-speed spindle are selected in the most optimum condition, the natural frequency and deformation of the spindle end is obtained by FEM mode analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness.

고정밀 스핀들의 회전정밀도 측정 오차 분리법에 관한 연구 (A study on the Error Separation Method in Rotation Accuracy Measurement of High Precision Spindle Unit)

  • 김상화;김병하;진용규
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.78-84
    • /
    • 2014
  • The rotation of a spindle unit must be accurate for high-quality machining and to improve the quality of the machine tools.Therefore, the proper measurement of the rotation accuracy and ensuring a proper analysis are very important. Separate processes are necessary because spindle errors and roundness errors associated with the test balls can both factor into the measured rotation error values. We used three methods to discern test ball errors and analyzed which could be deemed as the most proper technique in a test of the rotation accuracy of the main spindle of a machine tool.

공작기계용 고속주축계의 공기냉각특성에 관한 연구 (Air Cooling Characteristics of a High Speed Spindle System for Machine Tools)

  • 최대봉;김석일;송지복
    • 한국정밀공학회지
    • /
    • 제11권1호
    • /
    • pp.123-128
    • /
    • 1994
  • A high speed spindle system for machine tools can be used to reduce the machining time, to improve the machining accuracy, to perform the machining of light metals and hard materials, and to unite the cutting and grinding processes. In this study, a high speed spindle system is developed by applying the oil-air lubrication method, angular contact ball bearings, injection nozzles with dual orifices, cooling jacket and so on. And an air cooling experiment for evaluating the performance of the spindle system is carried out. Especially, in ofder to establish the air cooling conditions related to the development of a high speed spindle system, the effects of cooling air pressure, oil supply rate, air supply rate and rotational spindle speed are studied and discussed on the bearing temperature rise and frictional torque. Also the effects of cooling air pressure, rotational spindle speed and spindle system structure is investigated on the bearing temperature distribution. The experiment on the test model reveals the usefulness of the air cooling method.

  • PDF

공작기계 주축용 2단 치차 감속기 해석 (Analysis of 2 step gear reducer in machine tool spindle)

  • 장영도;장희락;여진욱
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.99-103
    • /
    • 2001
  • Though the research and the development in the field of machine tool was focused on high precision and high speed machine these days, traditional gear reduction device has been used to increase the cutting force which was transmitted from power source, motor In this study, analysis of 2 step gear reducer used in machining center spindle was carried out by using APM WinMachine which is commercial software for the analysis of machine element and system. For the analysis of this device, first of all, the analysis of power source and the transmitting of it were carried out. Then, machine elements like gear, shaft, bearing, and the forth, was analyzed in the view point of life time, static strength, stiffness, fatigue failure, etc. Consequently, we can estimate them and introduce new idea of the design modification of reduction device by this study.

고속주축의 드로우바 지지조건에 따른 동특성 해석 (Analysis of Dynamic Characteristics of A High-speed Milling Spindle Due to Support Stiffness of Drawbar)

  • 노승국;박종권;경진호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.484-487
    • /
    • 2003
  • In designing AMBs (active magnetic bearings) for high-speed spindle system, the shaft is usually assumed as a rigid rotor. For automatic tool change process, there should be a tool clamping system with drawbar using spring or hydraulic force, and the drawbar in the spindle can be in various condition of support during design and manufacturing error. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1$\^$st/ bending mode of spindle.

  • PDF

꼭지점계획법을 이용한 주축 치수 결정에 관한 연구 (A Study on the Determination of Shaft Size Using the Extreme Vertices Design)

  • 황영국;이춘만
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.214-220
    • /
    • 2009
  • The spindle is the main component in machine tools. The static and dynamic stiffness of the spindle directly affect the machining productivity and surface integrity of the workpiece. The static and dynamic stiffness of the spindle depend on the shaft size, bearing arrangement, bearing span length, and so on. Therefore, the selection of shaft size and bearing span length are important to improve the spindle stiffness. This paper presents the determination of shaft size and bearing span length in spindle design step. In order to select the optimal bearing and built-in motor locations with constraint conditions, the extreme vertices design was applied. The results show that extreme vertices design is usable for spindle design with design constraints.

소형 앵글 스핀들 공구의 절삭성능에 관한 연구 (Cutting Performance of a Developed Small-angle Spindle Tool)

  • 김진수;김용조
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.

다축 스핀들 헤드 기반의 전용 공작기계 설계 (Design of Special-purpose Machine Tool Based on a Multi-spindle Head)

  • 맹희영;박주욱;박홍근
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.675-681
    • /
    • 2015
  • When many holes on a plane are machined simultaneously, the positional precision and machining efficiency are very important. Multi-spindle heads are typical order making products of which the number of shafts and hole positions vary depending on the size or form of the product. For the automatic design of multi-spindle heads, the design modules for power transmission systems for drive, idle, and spindle shafts were developed, and a design technique the determining the optimum position and number of idle shafts according to gear positions was developed. In addition, for the precise determination of the multi-spindle head, the design methods for the guide planes of columns, and feed mechanisms were devised. In addition, the design modules for accurate clamping and automatic transportation mechanisms were developed. Finally, in order to simplify and standardize the design process, the design analysis and simulation verification modules are integrated.

고정밀 공작기계의 열적효과 측정 및 불확도 추정에 관한 연구 (A Study on the Thermal Effects Measurement and Uncertainty Estimation for High Precision Machine Tools)

  • 손덕수;김상화;박일환
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.107-113
    • /
    • 2013
  • When the main spindle of high precision machine tools are run many hours, heat is generated in bearing parts of the inside of the spindle. Also, headstock is appeared distortion by inside and outside temperature difference of a machine. This paper studies method to measure behavior of machine tool about these thermal effects. In addition, it estimates measurement uncertainty factors which can be appeared in thermal effects measurement. Finding the factor of thermal affect measurement is important for estimation of measurement uncertainty. This paper measures thermal effects of high precision machine tools and evaluates the important factors of uncertainty.