• Title/Summary/Keyword: machine vision system

Search Result 571, Processing Time 0.026 seconds

A Study of the Machine Vision Algorithm for Quality Control of Concrete Surface Grinding Equipment (콘크리트 표면절삭 장비의 품질관리를 위한 머신비전 알고리즘 개발)

  • Kim, Jeong-Hwan;Seo, Jong-Won;Song, Soon-Ho;Lee, Won-Sik
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.983-986
    • /
    • 2007
  • Concrete surface grinding is required for flatness and adhesiveness of concrete surface. The procedure is, however, labor intensive and has a hazardous work condition. Also, the productivity and the quality of concrete surface grinding depend on the levels of worker. Thus, the development of remote controlled concrete surface grinding equipment is necessary to prevent the environmental pollution and to protect the workers from hazardous work condition. However, it is difficult to evaluate the grinded surface objectively in a remote controlled system. The machine vision system developed in this study takes the images of grinded surface with the network camera for image processing. Then, by representing the quality test results to the graphic MMI program of the remote control station, the quality control system is constructed. The machine vision algorithm means the image processing algorithm of grinded concrete surface and this paper presents the objective quality control standard of grinded concrete surface through the application of the suggested algorithm.

  • PDF

A study on the automatic wafer alignment in semiconductor dicing (반도체 절단 공정의 웨이퍼 자동 정렬에 관한 연구)

  • 김형태;송창섭;양해정
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.105-114
    • /
    • 2003
  • In this study, a dicing machine with vision system was built and an algorithm for automatic alignment was developed for dual camera system. The system had a macro and a micro inspection tool. The algorithm was formulated from geometric relations. When a wafer was put on the cutting stage within certain range, it was inspected by vision system and compared with a standard pattern. The difference between the patterns was analyzed and evaluated. Then, the stage was moved by x, y, $\theta$ axes to compensate these differences. The amount of compensation was calculated from the result of the vision inspection through the automatic alignment algorithm. The stage was moved to the compensated position and was inspected by vision for checking its result again. Accuracy and validity of the algorithm was discussed from these data.

Detection of Surface Cracks in Eggshell by Machine Vision and Artificial Neural Network (기계 시각과 인공 신경망을 이용한 파란의 판별)

  • 이수환;조한근;최완규
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.409-414
    • /
    • 2000
  • A machine vision system was built to obtain single stationary image from an egg. This system includes a CCD camera, an image processing board and a lighting system. A computer program was written to acquire, enhance and get histogram from an image. To minimize the evaluation time, the artificial neural network with the histogram of the image was used for eggshell evaluation. Various artificial neural networks with different parameters were trained and tested. The best network(64-50-1 and 128-10-1) showed an accuracy of 87.5% in evaluating eggshell. The comparison test for the elapsed processing time per an egg spent by this method(image processing and artificial neural network) and by the processing time per an egg spent by this method(image processing and artificial neural network) and by the previous method(image processing only) revealed that it was reduced to about a half(5.5s from 10.6s) in case of cracked eggs and was reduced to about one-fifth(5.5s from 21.1s) in case of normal eggs. This indicates that a fast eggshell evaluation system can be developed by using machine vision and artificial neural network.

  • PDF

A Study on Machine Vision System and Camera Modeling with Geometric Distortion

  • 왕한흥;한성현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.179-185
    • /
    • 1997
  • This paper presents machine vision technique with a camera modeling that accounts for major sources of camera distortion, namely,radial, decentering, and thin prism distortion. Radial distortion causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to varios degrees of decentering,that is,the optical centers of lens elements are not strictly collinear. Thin prism distortion arises form imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of and to apply the line of part manufacturing.

Machine Vision Algorithm Design for Remote Control External Defect Inspection

  • Kang, Jin-Su;Kim, Young-Hyung;Yoon, Sang-Goo;Lee, Yong-Hwan
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.21-29
    • /
    • 2022
  • Recently, the scope of the smart factory has been expanded, and process research to minimize the part that requires manpower in many processes is increasing. In the case of detecting defects in the appearance of small products, precise verification using a vision system is required. Reliability and speed of inspection are inefficient for human inspection. In this paper, we propose an algorithm for inspecting product appearance defects using a machine vision system. In the case of the remote control targeted in this paper, the appearance is different for each product. Due to the characteristics of the remote control product, the data obtained using two cameras is compared with the master data after denoising and stitching steps are completed. When the algorithm presented in this paper is used, it is possible to detect defects in a shorter time and more accurately compared to the existing human inspection.

Power-Law Transformation Method Development for Accuracy Improvement of Appearance Inspection (외관 검사의 정확도 개선을 위한 멱함수 변환 기법 개발)

  • Park, Se-Hyuk;Kang, Su-Min;Huh, Kyung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.11-13
    • /
    • 2007
  • The appearance inspection of various electronic products and parts has been executed by the eyesight of human. But inspection by eyesight can't bring about uniform inspection result. Because the appearance inspection result by eyesight of human is changed by condition of physical and spirit of the checker. So machine vision inspection system is currently used to many appearance inspection fields instead of the checker. However the inspection result of machine vision is changed by the illumination of workplace. Therefore we have used a power-law transformation in this paper. for improvement of vision inspection accuracy and could increase inspection accuracy of vision system. Also this system has been developed only using PC, CCD Camera and Visual C++ for universal workplace.

  • PDF

Development of Automatic ALC Block Measurement System Using Machine Vision (머신 비전을 이용한 ALC 블록 생산공정의 자동 측정 시스템 개발)

  • 엄주진;허경무
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.494-500
    • /
    • 2004
  • This paper presents a machine vision system, which inspects the measurement of the ALC block on a real-time basis in the production process. The automatic measurement system was established with a CCD camera, an image grabber, and a personal computer without using assembled measurement equipment. Images obtained by this system was processed by an algorithm, specially designed for an enhanced measurement accuracy. For the realization of the proposed algorithm, a preprocessing method that can be applied to overcome uneven lighting environment, boundary decision method, unit length decision method in uneven condition with rocking objects, and a projection of region using pixel summation are developed. From our experimental results, we could find that the required measurement accuracy specification is sufficiently satisfied by using the proposed method.

Robust Camera Calibration using TSK Fuzzy Modeling

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 2007
  • Camera calibration in machine vision is the process of determining the intrinsic camera parameters and the three-dimensional (3D) position and orientation of the camera frame relative to a certain world coordinate system. On the other hand, Takagi-Sugeno-Kang (TSK) fuzzy system is a very popular fuzzy system and approximates any nonlinear function to arbitrary accuracy with only a small number of fuzzy rules. It demonstrates not only nonlinear behavior but also transparent structure. In this paper, we present a novel and simple technique for camera calibration for machine vision using TSK fuzzy model. The proposed method divides the world into some regions according to camera view and uses the clustered 3D geometric knowledge. TSK fuzzy system is employed to estimate the camera parameters by combining partial information into complete 3D information. The experiments are performed to verify the proposed camera calibration.

Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection (머신비전 자동검사를 위한 대상객체의 인식방향성 개선)

  • Hong, Seung-Beom;Hong, Seung-Woo;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1384-1390
    • /
    • 2019
  • This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This enables the automatic machine vision inspection to detect the image of the inspection object regardless of the position and orientation of the object, eliminating the need for a separate inspection jig and improving the automation level of the inspection process. This study develops the technology and method that can be applied to the wire harness manufacturing process as the inspection object and present the result of real system. The results of the system implementation was evaluated by the accredited institution. This includes successful measurement in the accuracy, detection recognition, reproducibility and positioning success rate, and achievement the goal in ten kinds of color discrimination ability, inspection time within one second and four automatic mode setting, etc.