• 제목/요약/키워드: machine learning for regression

검색결과 581건 처리시간 0.032초

Kernel Adatron Algorithm for Supprot Vector Regression

  • Kyungha Seok;Changha Hwang
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.843-848
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising classification and regression technique developed by Bapnik and his group at AT&T Bell laboratories. However it has failed to establish itself as common machine learning tool. This is partly due to the fact that SVM is not easy to implement and its standard implementation requires the optimization package for quadratic programming. In this paper we present simple iterative Kernl Adatron algorithm for nonparametric regression which is easy to implement and guaranteed to converge to the optimal solution and compare it with neural networks and projection pursuit regression.

  • PDF

Optimizing shallow foundation design: A machine learning approach for bearing capacity estimation over cavities

  • Kumar Shubham;Subhadeep Metya;Abdhesh Kumar Sinha
    • Geomechanics and Engineering
    • /
    • 제37권6호
    • /
    • pp.629-641
    • /
    • 2024
  • The presence of excavations or cavities beneath the foundations of a building can have a significant impact on their stability and cause extensive damage. Traditional methods for calculating the bearing capacity and subsidence of foundations over cavities can be complex and time-consuming, particularly when dealing with conditions that vary. In such situations, machine learning (ML) and deep learning (DL) techniques provide effective alternatives. This study concentrates on constructing a prediction model based on the performance of ML and DL algorithms that can be applied in real-world settings. The efficacy of eight algorithms, including Regression Analysis, k-Nearest Neighbor, Decision Tree, Random Forest, Multivariate Regression Spline, Artificial Neural Network, and Deep Neural Network, was evaluated. Using a Python-assisted automation technique integrated with the PLAXIS 2D platform, a dataset containing 272 cases with eight input parameters and one target variable was generated. In general, the DL model performed better than the ML models, and all models, except the regression models, attained outstanding results with an R2 greater than 0.90. These models can also be used as surrogate models in reliability analysis to evaluate failure risks and probabilities.

함수 근사를 위한 점증적 서포트 벡터 학습 방법 (Incremental Support Vector Learning Method for Function Approximation)

  • 임채환;박주영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(3)
    • /
    • pp.135-138
    • /
    • 2002
  • This paper addresses incremental learning method for regression. SVM(support vector machine) is a recently proposed learning method. In general training a support vector machine requires solving a QP (quadratic programing) problem. For very large dataset or incremental dataset, solving QP problems may be inconvenient. So this paper presents an incremental support vector learning method for function approximation problems.

  • PDF

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

Classification of nuclear activity types for neighboring countries of South Korea using machine learning techniques with xenon isotopic activity ratios

  • Sang-Kyung Lee;Ser Gi Hong
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1372-1384
    • /
    • 2024
  • The discrimination of the source for xenon gases' release can provide an important clue for detecting the nuclear activities in the neighboring countries. In this paper, three machine learning techniques, which are logistic regression, support vector machine (SVM), and k-nearest neighbors (KNN), were applied to develop the predictive models for discriminating the source for xenon gases' release based on the xenon isotopic activity ratio data which were generated using the depletion codes, i.e., ORIGEN in SCALE 6.2 and Serpent, for the probable sources. The considered sources for the neighboring countries of South Korea include PWRs, CANDUs, IRT-2000, Yongbyun 5 MWe reactor, and nuclear tests with plutonium and uranium. The results of the analysis showed that the overall prediction accuracies of models with SVM and KNN using six inputs, all exceeded 90%. Particularly, the models based on SVM and KNN that used six or three xenon isotope activity ratios with three classification categories, namely reactor, plutonium bomb, and uranium bomb, had accuracy levels greater than 88%. The prediction performances demonstrate the applicability of machine learning algorithms to predict nuclear threat using ratios of xenon isotopic activity.

Machine Learning Methods to Predict Vehicle Fuel Consumption

  • Ko, Kwangho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권9호
    • /
    • pp.13-20
    • /
    • 2022
  • 본 연구에서는 주행 차량의 실시간 연료소모량을 예측할 수 있는 머신러닝 기법을 제안하고 그 특성을 분석하였다. 머신러닝 학습을 위해 실도로 주행을 실시하여 주행 속도, 가속도, 도로 구배와 함께 연료소모량을 측정하였다. 특성 데이터로 속도, 가속도, 도로구배를, 타깃으로 연료소모량을 지정하여 다양한 머신러닝 모델을 학습시켰다. 회귀법에 해당하는 K-최근접이웃회귀 및 선형회귀와 함께, 분류법에 해당하는 K-최근접이웃분류, 로지스틱회귀, 결정트리, 랜덤포레스트, 그래디언부스팅을 사용하였다. 실시간 연료소모량에 대한 예측 정확도는 0.5 ~ 0.6 수준으로 전반적으로 낮았고, 회귀법의 경우 분류법보다 정확도가 떨어졌다. 총연료소모량에 대한 예측 오차는 0.2 ~ 2.0% 수준으로 상당히 정확했고, 분류법보다 회귀법의 오차가 더 낮았다. 이는 예측 정확도의 기준으로 결정계수(R2)를 사용했기 때문인데, 이 값이 작을수록 타깃의 평균 부근에 예측치가 좁게 분포하기 때문이다. 따라서 실시간 연료소모량 예측에는 분류법이, 총연료소모량 예측에는 회귀법이 적합하다고 할 수 있다.

IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정 (Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors)

  • 김혜진;이현수;최병진;김용혁
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.17-23
    • /
    • 2019
  • 본 논문은 온도 등 7 가지의 IoT 센서에서 수집된 기상데이터의 각 기상요소에 대하여 품질관리(Quality Control; QC)를 하였다. 또한, 우리는 측정된 값에 오류가 있는 데이터를 기계학습으로 의미있게 추정하는 방법을 제안한다. 수집된 기상데이터를 기본 QC 결과를 바탕으로 오류 데이터를 선형 보간하여 기계학습 QC를 진행하였으며, 기계학습 기법으로는 대표적인 서포트벡터회귀, 의사결정테이블, 다층퍼셉트론을 사용했다. 기본 QC의 적용 유무에 따라 비교해 보았을 때, 우리는 기본 QC를 거쳐 보간한 기계학습 모델들의 평균절대오차(MAE)가 21% 낮은 것을 확인할 수 있었다. 또한, 기계학습 기법에 따라 비교하여 서포트벡터회귀 모델을 적용하였을 때가, 모든 기상 요소에 대하여 MAE가 평균적으로 다층신경망은 24%, 의사결정테이블은 58% 낮은 것을 알 수 있었다.

Hourly Steel Industry Energy Consumption Prediction Using Machine Learning Algorithms

  • Sathishkumar, VE;Lee, Myeong-Bae;Lim, Jong-Hyun;Shin, Chang-Sun;Park, Chang-Woo;Cho, Yong Yun
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2019
  • Predictions of Energy Consumption for Industries gain an important place in energy management and control system, as there are dynamic and seasonal changes in the demand and supply of energy. This paper presents and discusses the predictive models for energy consumption of the steel industry. Data used includes lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission and load type. In the test set, four statistical models are trained and evaluated: (a) Linear regression (LR), (b) Support Vector Machine with radial kernel (SVM RBF), (c) Gradient Boosting Machine (GBM), (d) random forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used to measure the prediction efficiency of regression designs. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

Speed-up of the Matrix Computation on the Ridge Regression

  • Lee, Woochan;Kim, Moonseong;Park, Jaeyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3482-3497
    • /
    • 2021
  • Artificial intelligence has emerged as the core of the 4th industrial revolution, and large amounts of data processing, such as big data technology and rapid data analysis, are inevitable. The most fundamental and universal data interpretation technique is an analysis of information through regression, which is also the basis of machine learning. Ridge regression is a technique of regression that decreases sensitivity to unique or outlier information. The time-consuming calculation portion of the matrix computation, however, basically includes the introduction of an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge regression estimator calculation through series expansion and computation recycle without adopting an inverse matrix in the calculation process or other factorization methods. In addition, the performances of the proposed algorithm and the existing algorithm were compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm with good accuracy was demonstrated.

Modeling with Thin Film Thickness using Machine Learning

  • Kim, Dong Hwan;Choi, Jeong Eun;Ha, Tae Min;Hong, Sang Jeen
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.48-52
    • /
    • 2019
  • Virtual metrology, which is one of APC techniques, is a method to predict characteristics of manufactured films using machine learning with saving time and resources. As the photoresist is no longer a mask material for use in high aspect ratios as the CD is reduced, hard mask is introduced to solve such problems. Among many types of hard mask materials, amorphous carbon layer(ACL) is widely investigated due to its advantages of high etch selectivity than conventional photoresist, high optical transmittance, easy deposition process, and removability by oxygen plasma. In this study, VM using different machine learning algorithms is applied to predict the thickness of ACL and trained models are evaluated which model shows best prediction performance. ACL specimens are deposited by plasma enhanced chemical vapor deposition(PECVD) with four different process parameters(Pressure, RF power, $C_3H_6$ gas flow, $N_2$ gas flow). Gradient boosting regression(GBR) algorithm, random forest regression(RFR) algorithm, and neural network(NN) are selected for modeling. The model using gradient boosting algorithm shows most proper performance with higher R-squared value. A model for predicting the thickness of the ACL film within the abovementioned conditions has been successfully constructed.