
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, Oct. 2021 3482
Copyright ⓒ 2021 KSII

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2019-0-00098, Advanced and Integrated Software
Development for Electromagnetic Analysis). This work was also supported by the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. NRF -2019R1G1A1007832).

http://doi.org/10.3837/tiis.2021.10.001 ISSN : 1976-7277

Speed-up of the Matrix Computation on
the Ridge Regression

Woochan Lee1, Moonseong Kim2,* and Jaeyoung Park3,*

1 Department of Electrical Engineering, Incheon National University
Incheon 22012, Republic of Korea

[e-mail: wlee@inu.ac.kr]
2 Department of IT Convergence Software, Seoul Theological University

Bucheon 14754, Republic of Korea
[e-mail: moonseong@stu.ac.kr]

3 Department of Computer Engineering, Hongik University
Seoul 04066, Republic of Korea
[e-mail: jypdeca@hongik.ac.kr]

*Corresponding authors: Moonseong Kim, Jaeyoung Park

Received January 8, 2021; accepted March 4, 2021;
 published October 31, 2021

Abstract

Artificial intelligence has emerged as the core of the 4th industrial revolution, and large
amounts of data processing, such as big data technology and rapid data analysis, are inevitable.
The most fundamental and universal data interpretation technique is an analysis of information
through regression, which is also the basis of machine learning. Ridge regression is a technique
of regression that decreases sensitivity to unique or outlier information. The time-consuming
calculation portion of the matrix computation, however, basically includes the introduction of
an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a
major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge
regression estimator calculation through series expansion and computation recycle without
adopting an inverse matrix in the calculation process or other factorization methods. In
addition, the performances of the proposed algorithm and the existing algorithm were
compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm
with good accuracy was demonstrated.

Keywords: Machine Learning, Matrix Computation, Ridge Regression, Series Expansion,
Simulation Acceleration

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3483

1. Introduction

The rise of the fourth industrial revolution attracted many researchers’ attention to artificial
intelligence and big data techniques. In particular, interest in machine learning that is a branch
of artificial intelligence is explosive. Regression analysis (which is a kind of supervised
learning) that estimates trends by learning the already known data set is the basic technique of
machine learning [1], and the utilization of the technique has never been reduced. Machine
learning techniques, including regression, require massive data processing under recent sensor
data environments. Due to computational limitation, it is hard to adopt these novel machine
learning techniques especially in IoT (Internet of Things) or mobile devices [2]. As the data
size grows large, it is a significant concern of how fast the data is processed as well as accurate
forecasting.

For radar applications, linear regression can be used to improve target detection
performance by estimating the clutter ridge [3]. Ridge regression with regularization also helps
to enhance position accuracy under a strong jamming environment [4]. Thus, ridge regression
techniques can play an important role in the tremendous data input condition.

However, ridge regression contains a matrix inverse-related part. Thus the treatment of this
part takes a large portion of the total time for getting a ridge regression estimator. Therefore,
implementing a fast regression model can be achieved by accelerating this calculation part.
The proposed algorithm gets through series expansion and computation recycle without
adopting an inverse matrix in the calculation process or other matrix factorization techniques.
The proposed algorithm shows superior performance compared to previously proposed
algorithms, and it shows an acceptable margin of error.

This paper’s idea is based initially on the idea proposed by Lee [5]. However, this idea is
limited to speeding up the acquisition of the regression estimator through Cholesky
factorization in ordinary least squares methods. This paper expanded its scope to the case of
ridge regression, developed a new algorithm without any matrix inverse or factorization, and
verified its performance.

The rest of this paper is organized as follows. Section 2 reviews prior research on speeding
up by reducing ridge regression calculation. Section 3 proposes a new algorithm and Section
4 shows simulation results based on the new algorithm. Section 5 presents conclusions.

2. Regression Models and Previous Work
First, system of linear regression function is defined by:

𝑎𝑎1𝑥𝑥11 + 𝑎𝑎2𝑥𝑥12 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥1𝑛𝑛 = 𝑦𝑦1
𝑎𝑎1𝑥𝑥21 + 𝑎𝑎2𝑥𝑥22 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥2𝑛𝑛 = 𝑦𝑦2

.
.

𝑎𝑎1𝑥𝑥𝑛𝑛1 + 𝑎𝑎2𝑥𝑥𝑛𝑛2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑛𝑛

(1)

where 𝑥𝑥 is observed value (known data set), and 𝑎𝑎 is coefficient. Based on Equation (1), for
instance, a system of linear equations can be set up to illustrate the relationship of employment
rate (corresponding 𝑦𝑦) on scores of 𝑛𝑛 grade points (corresponding 𝑥𝑥). This linear equation is
represented by a matrix equation of 𝑋𝑋𝑎𝑎 = 𝑦𝑦. Vector 𝑦𝑦 can be projected onto the column space

3484 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

of the matrix X, and the least squares method finds the projected vector 𝑦𝑦 = 𝑦𝑦� , which
minimizes the sum of squared residuals, as Equation (2). Furthermore, the regression estimator
𝑎𝑎� is represented as follows [6]:

𝑦𝑦� = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦 = 𝑋𝑋𝑎𝑎�, (2)

𝑎𝑎� = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦 (3)

Here, 𝑋𝑋+ can be defined as:

𝑋𝑋+ = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇

which is the Moore-Penrose generalized inverse [7].
The regression coefficient 𝑎𝑎� is linearly combined with the new observed values, and it

produces the new estimated value 𝑦𝑦�. In other words, once 𝑎𝑎� is found, for example, a new
student’s employment rate (𝑦𝑦) can be estimated with a new student’s grade points. Therefore,
to obtain the coefficient 𝑎𝑎� is the core of the regression analysis and machine learning.

However, when implementing various regression analyses including least squares
regression, there are differences in performance depending on how the regression estimator 𝑎𝑎�
is derived. The difference in performance is noticeable as the size of the desired matrix grows.

There are well-known regression models that have already been proposed, such as lasso
regression, ridge regression, quantile regression, and progress trees [8]. Of these models, the
ridge regression has an additional constraint on linear regression coefficients to the ordinary
least squares model. This additional constraint (λ) is to minimize the sum of the square of
weights [9].

Under these constraints, ridge regression model gives the effect of regularization and more
stable future predictions. Taking vector-matrix form of ridge regression model, the ridge
regression estimator (𝛽𝛽) can be obtained as:

𝛽𝛽(𝜆𝜆) = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇𝑦𝑦 (4)

Since the calculation of (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 takes a large portion of the total time for getting
ridge regression estimator, it is required to have accelerated method to obtain ridge regression
estimator.

One way to speed up the inverse matrix calculation of ridge regression is factorizing the
given matrix 𝐴𝐴 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 into matrices such as upper triangular matrix and diagonal
matrix. Among the methods to factor the given matrix, Singular Value Decomposition (SVD)
method has the advantage of being able to apply any matrix even if the given matrix 𝐴𝐴 is not
a square matrix. The SVD method factors the matrix 𝐴𝐴 as follows [10]:

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 (5)

where U and V are orthogonal matrices and Σ is a diagonal matrix. However, it needs huge
calculations to factor an arbitrary matrix with SVD [11]. Another approach is to use Cholesky
decomposition, which factors the given matrix A as follows:

𝐴𝐴 = 𝐿𝐿𝐿𝐿𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑅𝑅 (6)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3485

where 𝐿𝐿 is a lower triangular matrix and 𝑅𝑅 is an upper triangular matrix. Although Cholesky
decomposition needs an additional process to factor the matrix, it reduces calculation time and
has lower computational complexity [12]. It is also known that it is faster than SVD. However,
it is somewhat unstable in terms of accuracy [13].

Another approach based on QR decomposition, which Q represents an orthogonal matrix,
and R represents an upper triangular matrix, was previously proposed. There are different
methods to compute QR decomposition such as Gram-Schmidt Orthonormalization,
Householder Reflections and Givens rotation [14]. The method factorizes given matrix A into:

𝐴𝐴 = 𝑄𝑄𝑅𝑅 (7)

with Q and R matrices. QR decomposition reduces computations through factorization like the
above prior researches.

However, a numerical roundoff error to make Q prone to lose orthogonality, which is
defined as follows:

𝑓𝑓𝑓𝑓(𝑥𝑥,𝑦𝑦) = (𝑥𝑥,𝑦𝑦) + 𝛿𝛿 (8)

where x and y are two vectors and δ is the error from rounding operation, is likely to occur in
a classical Gram-Schmidt Orthonormalization process while constructing Q matrix [15]. Also,
Householder Reflections and Givens rotation to perform QR factorization are known to be
slower than Cholesky decomposition [16].

3. The Proposed Algorithm
Total computing time heavily depends on the calculation of an inverse related part, and the
several existing methods are using matrix factorization. It takes much time to compute an
inverse matrix directly or to factor matrix directly into the desired form. The proposed
algorithm approximates an inverse matrix through series expansion and exploits computation
recycle instead of computing an inverse matrix directly or adopting any matrix factorization
techniques.

Now, the given matrix 𝐴𝐴 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 is approximated through a series expansion of
the inverse matrix as below:

(𝜆𝜆 + 𝐾𝐾)−1 = 𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3 + 𝐾𝐾4 … (9)

where ‖𝐾𝐾‖ ≪ 1 [17].
For the series expansion to converge, the conditions of ‖K‖≪1 should be absolutely

satisfied. If the norm of the matrix is greater than 1, the series expansion must diverge and the
error increases, resulting in inaccurate approximation.

With norm condition satisfied, the norm of the matrix 𝐾𝐾 is much less than 1 during the
series expansion process, and the norms of the other matrix terms such as 𝐾𝐾2 and 𝐾𝐾3 are
gradually smaller as the order of terms increases in the process of expansion. Therefore, the
first few terms are sufficient to provide a good approximation of the inverse. For example,
Equation (9) can be approximated with 3 expansion terms (3 terms expansion case):

(𝜆𝜆 + 𝐾𝐾)−1 ≈ 𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 (10)

3486 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

where ‖𝐾𝐾‖ ≪ 1. It is also possible to add more terms to Equation (10) to improve
approximation accuracy. With this knowledge, to obtain ridge regression estimator with series
expansion, the part (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 in the original Equation (4) can be changed into the
expression starting with an identity matrix as Equation (10). From Equation (4), the expression
for ridge regression estimator can be transformed as:

�̂�𝛽 = �𝜆𝜆 �𝜆𝜆 +
1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋��

−1

𝑋𝑋𝑇𝑇𝑦𝑦

=
1
𝜆𝜆
�𝜆𝜆 +

1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋�

−1
𝑋𝑋𝑇𝑇𝑦𝑦

(11)

Recalling Equation (10), Equation (11) takes the form of (10) when 1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 is substituted

into 𝐾𝐾. To expand Equation (11) in series, �1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� should be much less than 1 to make

overall system converge. To satisfy this strict condition, just the value of 𝜆𝜆 can be adjusted
since the matrix 𝑋𝑋 is already given. In this paper, the initial setting is 𝜆𝜆 = 10𝑛𝑛2 (where 𝑛𝑛 is
the column size of the matrix 𝑋𝑋 and 𝑋𝑋𝑇𝑇𝑋𝑋 is a square matrix of order 𝑛𝑛), and definitely, other
settings are also possible. Therefore, the value of 𝜆𝜆 depends on the size of the matrix 𝑋𝑋. This
assumption about regularization factor 𝜆𝜆 is reasonable because the emphasis on the diagonal
element takes effect when the diagonal element is greater than off-diagonal elements.

Because it has not known the method that gives an optimal value of 𝜆𝜆 [18], the value of 𝜆𝜆
can be assumed to be determined freely in this paper. Therefore, instead of choosing adaptive
values according to the data characteristics of the given matrix, it is also possible to choose
any value that meets the convergence condition, for example, 𝜆𝜆 = 109. It should be noted that
the choice of 𝜆𝜆 is chosen to compensate for the collinearity of the data set in a real-world
application.

Expanding Equation (11), the final form is obtained as:

�̂�𝛽 =
1
𝜆𝜆
�𝜆𝜆 −

1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 +

1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)2� (𝑋𝑋𝑇𝑇𝑦𝑦) (12)

Next, a new approach to calculate the series expansion effectively is proposed. The new
approach reuses the previously calculated matrix-vector products in the next matrix calculation.
In the series expansion of (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1, 𝑋𝑋𝑇𝑇𝑦𝑦 and 𝑋𝑋𝑇𝑇𝑋𝑋 multiplied by 𝑋𝑋𝑇𝑇𝑦𝑦 are repeated as
shown in Equation (12). Based on this observation, we obtain a much faster result by
multiplying −1

𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 by (𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) that is calculated in the previous step than calculating

1
𝜆𝜆𝑘𝑘

(𝑋𝑋𝑇𝑇𝑋𝑋)𝑘𝑘(𝑋𝑋𝑇𝑇𝑦𝑦) through multiplying 𝑋𝑋𝑇𝑇𝑋𝑋 by 𝑘𝑘 times in 𝑘𝑘th step. This speed-up is since it we
can change forward matrix-matrix operation into backward matrix-vector operation. Fig. 1
presents the comparison between the forward matrix-matrix operation and the backward
matrix-vector operation. The computational load difference between two methods considering
the computational complexity of the product of the 𝑚𝑚 × 𝑛𝑛 matrix and 𝑛𝑛 × 1 column vector is
significant.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3487

(𝐴𝐴𝑇𝑇𝐴𝐴)𝑦𝑦 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚

��
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
��

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�

𝑚𝑚𝑛𝑛2 + 𝑛𝑛2 (flops)

(a) Forward direction calculation

𝐴𝐴𝑇𝑇(𝐴𝐴𝑦𝑦) = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚

��
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
��

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
�

𝑛𝑛𝑚𝑚 + 𝑛𝑛𝑚𝑚 = 2𝑛𝑛𝑚𝑚 (flops)

(b) Backward direction calculation

Fig. 1. Flops comparison of matrix-matrix-vector operations

Specifically, in the worst-case scenario, the computational complexity is 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛2

flops when the Equation (11) is computed with the forward calculation by multiplying (𝑋𝑋𝑇𝑇𝑋𝑋)
from the beginning (Fig. 1. (a)) like Equation (13):

�̂�𝛽 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) −
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) +
1
𝜆𝜆3

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) (13)

However, the backward calculation by the form of Equation (13) takes only 2𝑛𝑛2 + 2𝑛𝑛2
flops:

�̂�𝛽 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) −
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑋𝑋)(
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦)) +
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑋𝑋)(
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦)) (14)

This is because the term of 1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) in the first step of Equation (14) is recycled to obtain
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) in the second step, and 1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) is also reused to calculate
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)2(𝑋𝑋𝑇𝑇𝑦𝑦) in the third step. Since each matrix-vector product takes only 2𝑛𝑛2 flops, the
computational complexity of the backward matrix-vector operation is 𝑂𝑂(𝑛𝑛2) compared to that
of the forward matrix-matrix operation, of which the computational complexity is 𝑂𝑂(𝑛𝑛3).
Therefore, the proposed recycling algorithm shows much better performance in terms of speed
than previous algorithms. Table 1 shows the pseudo-code of the proposed recycling algorithm.

Table 1. Expansion term reuse algorithm for the acceleration of matrix computation

Calculation of 𝜷𝜷

X_mul ← XTX
b1 ← XTy
b2 ← -(1/lambda)∙(X_mul∙b1)
b3 ← -(1/lambda)∙(X_mul∙b2)
b4 ← -(1/lambda)∙(X_mul∙b3)
…
beta ← -(1/lambda)∙(b1+b2+b3+b4)

3488 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

Actually, Equation (4) can be converted Equation (15) by the well-known matrix inversion
lemma [19-21]. By this lemma, the size of matrix inversion part can be further reduced when
𝑛𝑛 is greater than 𝑚𝑚. Thus, the inverse part ((𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1) is now ((𝑋𝑋𝑋𝑋𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1), then the
size of the inverse part becomes 𝑚𝑚2 , which is much smaller than 𝑛𝑛2 when 𝑛𝑛 ≫ 𝑚𝑚 . The
derivation of modified form of (4) is as follows:

𝛽𝛽 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇y

 =
1
𝜆𝜆

(𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1)𝑋𝑋𝑇𝑇𝑦𝑦

 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − (𝜆𝜆 − 𝜆𝜆(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1)𝑋𝑋𝑇𝑇𝑦𝑦

 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − (𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋 − 𝜆𝜆𝜆𝜆)(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦

 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − 𝑋𝑋𝑇𝑇𝑋𝑋(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦

 =
1
𝜆𝜆
𝑋𝑋𝑇𝑇(𝜆𝜆 − 𝑋𝑋(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦

 = 𝑋𝑋𝑇𝑇 �
1
𝜆𝜆
𝜆𝜆 −

1
𝜆𝜆
�𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋

1
𝜆𝜆

 �
−1
𝑋𝑋𝑇𝑇

1
𝜆𝜆

 �𝑦𝑦

 = 𝑋𝑋𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1𝑦𝑦

(15)

The pseudo-code of the new size-reduced algorithm based on the transformation of

Equation (15) is shown in Table 2. The significant differences compared to the original
algorithm described in Table 1 are 1) the value of variable X_mul, 2) the stating value of b1,
and 3) the final form of beta.

Table 2. Size-reduced expansion term reuse algorithm by the matrix inversion lemma

Calculation of 𝜷𝜷

X_mul ← XXT
b1 ← y
b2 ← -(1/lambda)∙(X_mul∙b1)
b3 ← -(1/lambda)∙(X_mul∙b2)
b4 ← -(1/lambda)∙(X_mul∙b3)
…
beta ← -XT∙(1/lambda)∙(b1+b2+b3+b4)

4. Simulation Results and Analysis
We measured the time of acquisition of the ridge regression estimator (𝛽𝛽) per each algorithm
and compared the proposed algorithm with algorithms based on the built-in functions from
commercial MATLAB (an abbreviation of MATrix LABoratory) program by MathWorks.
First, the matrix 𝑀𝑀 = 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆 in Equation (4) (𝛽𝛽(𝜆𝜆) = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇𝑦𝑦) is defined, then
the following four algorithms are executed:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3489

1) After deriving inverse matrix by MATLAB’s inv, then multiply this with 𝑏𝑏 = 𝑋𝑋𝑇𝑇𝑦𝑦,
2) By MATLAB’s backslash, derive 𝛽𝛽(𝜆𝜆) = 𝑀𝑀\𝑏𝑏,
3) 𝑀𝑀 is factorized by Cholesky decomposition, then apply backward/forward substitution

(self-coded),
4) Apply proposed series expansion and computation recycle algorithm (3 terms

expansion and 4 terms expansion cases).
The dimension of the matrix 𝑋𝑋 is 𝑚𝑚 × 𝑛𝑛, where 𝑚𝑚 = 1,000 and n is in range of 1,000 to

15,000 in units of 1,000. According to the value of 𝑛𝑛, the size of the matrix 𝑋𝑋𝑇𝑇𝑋𝑋 lies between
1,000 by 1,000 and 15,000 by 15,000. The elements of the matrix 𝑋𝑋 are generated by the
MATLAB command rand, which creates a matrix whose elements uniformly distributed in
the interval [0, 1]. In this fictional data set, the collinearity of the columns is not a significant
issue as the size of the matrix grows. We executed the simulation using Intel i7-7700 processor
@ 3.6GHz, RAM 16GB and MATLAB, 2018b. We measured the total time in terms of the
CPU times with MATLAB command cputime for each experiment.

It should be noted that the MATLAB command backslash does not necessarily use
Gaussian elimination. It selects an optimized method according to the shape of the matrix,
which can be reorganized as shown in Fig. 2 [22].

Fig. 1. Algorithms for MATLAB built-in function backslash (figure reconstructed from [22])

Table 3 shows the comparison of computation cost between the proposed algorithm and

Cholesky factorization-based algorithm. To be specific, it takes 𝑚𝑚𝑛𝑛2 flops to calculate 𝑋𝑋𝑇𝑇𝑋𝑋,
1
3
𝑛𝑛3 flops to perform initial Cholesky factorization, and 2𝑛𝑛2 flops to do backward/forward

substitution. The MATLAB command backslash also might be executed by selecting
Cholesky factorization.

MATLAB's
backslash

Upper or lower
triangluar matrix

Backward/Forward
substitution

Permutation of
triangular matrix

Permuted back
substitution

Symmetric or
Hermitian matrix Cholesky

Hessenberg matrix Reduce to upper
triangluar

Square matrix PA=LU

Not square matrix Househoder QR

3490 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

Table 3. Computation cost comparison of proposed algorithm vs. Cholesky factorization
(common 𝑋𝑋𝑇𝑇𝑋𝑋 matrix building: 𝑚𝑚𝑛𝑛2 (flops))

Class Operations Count Notes

Proposed
algorithm

1) 𝑚𝑚𝑛𝑛2 + 6𝑛𝑛2

2) 𝑚𝑚𝑛𝑛2 + 8𝑛𝑛2

1) 3 terms expansion
(𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2)

2) 4 terms expansion
(𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3)

Fig. 3 presents the comparison of computation time between the proposed algorithm with

a 3 terms expansion (𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2) and other algorithms. The MATLAB’s inv command has
the worst performance. Assuming implemented by Gauss-Jordan elimination, its
computational cost is known as approximately 𝑛𝑛3 flops [7]. Our proposed algorithm has the
best performance compared to MATLAB’s inv command and Cholesky factorization-based
algorithms. It also should be noted that the MATLAB built-in command-based algorithms can
exaggerate their performance. For example, even though the time complexity of the algorithm
of the MATLAB’s built-in function is 𝑂𝑂(𝑛𝑛3), its actual performance (time complexity) can be
𝑂𝑂(𝑛𝑛2) due to MATLAB’s optimization.

Fig. 4 presents the comparison between our algorithm and other algorithms again with the
time axis in log-scale to recognize clearly the performance improvement of the proposed
algorithm. When the size of the matrix is small, the performance improvement is not clear
compared to MATLALB’s inv, backslash, or self-implemented Cholesky factorization.
However, the performance improvement of the proposed algorithm is obvious as the size of
the matrix increases.

Fig. 3. Computation time comparison (3 terms expansion)

0 5000 10000 15000

Unknown Size

0

50

100

150

200

250

300

Ti
m

e

Matlab's inv

Matlab's backslash

Cholesky

Proposed (3 terms)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3491

Fig. 4. Computation time comparison (log-scale, 3 terms expansion)

Fig. 5 demonstrates the error performance of the proposed algorithm. Generally, the error

performance of MATLAB backslash command has been verified, we evaluated the error
performance of our algorithm with reference to MATLAB’s backslash command. As we
expected, approximation by series expansion obviously has the error. However, the relative
error range is only about 10-4 to 10-6, which is acceptable. In this paper, we use 𝜆𝜆 = 10𝑛𝑛2, but
the error will be reduced further if we use a larger 𝜆𝜆 value.

Fig. 5. Error Comparison (3 terms expansion)

0 5000 10000 15000

Unknown Size

10
-2

10
-1

10
0

10
1

10
2

10
3

Ti
m

e
(lo

g-
sc

al
e)

Matlab's inv

Matlab's backslash

Cholesky

Proposed (3 terms)

0 5000 10000 15000

Unknown Size

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Er
ro

r (
lo

g-
sc

al
e)

Matlab's inv

Cholesky

Proposed (3 terms)

3492 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

Fig. 6 shows the comparison between the proposed algorithm with 4 terms expansion (𝜆𝜆 −

𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3) and other algorithms. Fig. 7 presents Fig. 6 again with the time axis in log-
scale. When the size of the matrix is small, the performance improvement of our proposed
algorithm with 4 terms expansion is not definite compared to other algorithms. However, the
performance improvement can be confirmed as the size of the matrix increases. Definitely, 4
terms expansion case is slower than 3 terms expansion case due to the inclusion of more terms,
but its error performance is better than 3 terms expansion case.

Fig. 6. Computation time comparison (4 terms expansion)

Fig. 7. Computation time comparison (log-scale, 4 terms expansion)

0 5000 10000 15000

Unknown Size

0

50

100

150

200

250

300

Ti
m

e

Matlab's inv

Matlab's backslash

Cholesky

Proposed (4 terms)

0 5000 10000 15000

Unknown Size

10
-2

10
-1

10
0

10
1

10
2

10
3

Ti
m

e
(lo

g-
sc

al
e)

Matlab's inv

Matlab's backslash

Cholesky

Proposed (4 terms)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3493

Fig. 8. Performance comparison: the original version vs. size reduction version

Fig. 8 represents the performance comparison between the original version based on Table

1 (colored red) and the size-reduced version based on Table 2 (colored blue). The simulation
results are actually focusing on the original algorithm, which is basically better in 𝑚𝑚 ≫ 𝑛𝑛 case.
But if 𝑛𝑛 ≫ 𝑚𝑚 case, the size-reduced version performs better as shown in Fig. 8.

Fig. 9 presents the error analysis of overall algorithms with 𝜆𝜆 = 10𝑛𝑛2 . The error
performance of the 3 terms expansion is also included for the comparison. Since the higher
number of terms are included, the closer the real series expansion of the inverse matrix. The
error of the 4 terms expansion case is about 1

100
 of that of the 3 terms expansion case.

Fig. 9. Error Analysis (𝜆𝜆 = 10𝑛𝑛2)

0 5000 10000 15000

Unknown Size

10
-1

10
0

10
1

Ti
m

e

Proposed (4 terms)

Proposed (4 terms, size reduction)

0 5000 10000 15000

Unknown Size

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Er
ro

r (
lo

g-
sc

al
e)

Matlab's inv

Cholesky

Proposed (3 terms)

Proposed (4 terms)

3494 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

Fig. 10 illustrates an error analysis with 𝜆𝜆 = 𝑛𝑛2, which is a smaller 𝜆𝜆 case than previous
error analysis. The smaller 𝜆𝜆 means the matrix is less likely to be an identity matrix. Thus it
may reflect the actual data characteristics in the real-world applications. However, as 𝜆𝜆 value
decreases, the relative error increases because the norm of �1

𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� becomes bigger than the

previous case (Fig. 9). To be specific, the larger norm of �1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� will cause that series

expansion is less likely to be equal to the actual inverse part. Thus, 𝜆𝜆 should be reasonably
chosen.

Fig. 10. Error Analysis (𝜆𝜆 = 𝑛𝑛2)

5. Conclusion

With the advent of big data applications like radar applications, the data size becomes huge,
and the information is required to be processed quickly. In this paper, a new algorithm to
improve the computational efficiency of ridge regression is proposed. The proposed algorithm
uses series expansion and reuses matrix computation parts without inverse matrix and matrix
decomposition. The performance is superior to existing algorithms in terms of speed, and the
result shows good accuracy. For the 4 terms expansion example with 15,000 unknown case,
the proposed algorithm shows approximately 5.2 times faster than MATLAB’s backslash-
based algorithm, with less than 10-8 relative error.

Currently, large regularization constraints λ so as to series expansion equal to the inverse
part is using. A more generalized formula to adopt arbitrary regularization constraints λ will
be pursued in future work. The improvement of regression performance will contribute to the
development of artificial intelligence and machine learning, which are the key of the fourth
industrial revolution.

0 5000 10000 15000

Unknown Size

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Er
ro

r (
lo

g-
sc

al
e)

Matlab's inv

Cholesky

Proposed (4 terms)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3495

Acknowledgement
Prof. Woochan Lee is the first author. Prof. Moonseong Kim and Prof. Jaeyoung Park are co-
corresponding authors. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2019-0-00098, Advanced and Integrated Software Development for
Electromagnetic Analysis). This work was also supported by the National Research
Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning
(No. NRF -2019R1G1A1007832). The authors sincerely appreciate Mr. Minseong Kim for the
administrative and technical support.

References

[1] Y. Ding, F. Liu, T. Rui, and Z. Tang, “Patch based Semi-supervised Linear Regression for Face

Recognition,” KSII Transactions on Internet and Information Systems, vol. 13, no. 8, pp. 3962-
3980, 2019. Article (CrossRef Link)

[2] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An early resource
characterization of deep learning on wearables, smartphones and internet-of-things devices,” in
Proc. of the 2015 international workshop on internet of things towards applications, Seoul, Korea,
pp. 7-12, November 1, 2015. Article (CrossRef Link)

[3] W. Zhang, Z. He, and H. Li, “Linear Regression Based Clutter Reconstruction for STAP,” IEEE
Access, vol. 6, pp. 56862-56869, October 2018. Article (CrossRef Link)

[4] P. Fang, W. Jun, X. Jian-jun, and S. Yi-chao, “An optimization method of airborne radar and IRST
cooperative location based on ridge regression,” in Proc. of 2018 International Conference on
Electronics Technology (ICET), Chendu, China, pp. 365-372, May 23-27, 2018.
Article (CrossRef Link)

[5] Y. Na, M. Kim, D. Jun, and W. Lee, “Performance Comparison of Methods for Deriving Least
Squares Estimator in Repeated Least Squares Method Application,” in Proc. of the 2018 KSII
Spring Conference, Jeju Island, Korea, pp. 25-26, May 27-28, 2018.

[6] S. A. Van De Geer, “Least squares estimation,” in Encyclopedia of Statistics in Behavioral Science,
vol. 2, Chichester: John Wiley & Sons, 2005. Article (CrossRef Link)

[7] G. Williams, Linear algebra with applications, Burlington, MA, USA: Jones & Bartlett Learning,
2017.

[8] Y. Kokkinos and K. G. Margaritis, “Managing the computational cost of model selection and
cross-validation in extreme learning machines via Cholesky, SVD, QR and eigen decompositions,”
Neurocomputing, vol. 295, pp. 29-45, 2018. Article (CrossRef Link)

[9] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,”
Technometrics, vol. 12, no. 1, pp. 55-67, February 1970. Article (CrossRef Link)

[10] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,”
Numerische Mathematik, vol. 14, pp. 403-420, April 1970. Article (CrossRef Link)

[11] L. N. Trefethen and D. Bau III, Numerical linear algebra, Philadelphia, PA, USA: Siam, 1997.
[12] A. Krishnamoorthy and D. Menon, “Matrix inversion using Cholesky decomposition,” in Proc. of

2013 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA),
Poznan, Poland, pp. 70-72, September 26-28, 2013. Article (CrossRef Link)

[13] J. H. Randall and A. A. Rayner, “The accuracy of least squares calculations with the Cholesky
algorithm,” Linear Algebra and its Applications, vol. 127, pp. 463-502, 1990.
Article (CrossRef Link)

[14] C. H. Bischof and G. Quintana-Ortí, “Computing rank-revealing QR factorizations of dense
matrices,” ACM Transactions on Mathematical Software (TOMS), vol. 24, no. 2, pp. 226-253,
June 1998. Article (CrossRef Link)

https://doi.org/10.3837/tiis.2019.08.008
https://doi.org/10.1145/2820975.2820980
https://doi.org/10.1109/ACCESS.2018.2873290
https://doi.org/10.1109/ELTECH.2018.8401404
https://doi.org/10.1002/0470013192.bsa199
https://doi.org/10.1016/j.neucom.2018.01.005
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1007/BF02163027
https://ieeexplore.ieee.org/document/6710599
https://doi.org/10.1016/0024-3795(90)90357-I
https://doi.org/10.1145/290200.287637

3496 Lee et al.: Speed-up of the Matrix Computation on the Ridge Regression

[15] N. N. Abdelmalek, “Round off error analysis for Gram-Schmidt method and solution of linear
least squares problems,” BIT Numerical Mathematics, vol. 11, no. 4, pp. 345-367, 1971.
Article (CrossRef Link)

[16] M. Lira, R. Iyer, A. A. Trindade, and V. Howle, “QR versus Cholesky: a probabilistic analysis,”
International Journal of Numerical Analysis and Modeling, vol. 13, no. 1, pp. 114-121, 2016.
Article (CrossRef Link)

[17] W. Lee and D. Jiao, “Fast structure-aware direct time-domain finite-element solver for the analysis
of large-scale on-chip circuits,” IEEE Transactions on Components, Packaging and
Manufacturing Technology, vol. 5, no. 10, pp. 1477-1487, 2015. Article (CrossRef Link)

[18] V. R. Uslu, E. Egrioglu, and E. Bas, “Finding optimal value for the shrinkage parameter in ridge
regression via particle swarm optimization,” American Journal of Intelligent Systems, vol. 4, no.4,
pp. 142-147, 2014. Article (CrossRef Link)

[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Philadelphia, PA, USA: Siam,
2002.

[20] L. Szczecinski and D. Massicotte, “Low complexity adaptation of MIMO MMSE receivers,
implementation aspects,”in Proc. of GLOBECOM '05. IEEE Global Telecommunications
Conference, St. Louis, MO, USA, pp. 2327-2332, November 28-December 2, 2005.
Article (CrossRef Link)

[21] C. Song, K. Lee, and I. Lee, “MMSE Based Transceiver Designs in Closed-Loop Non-
Regenerative MIMO Relaying Systems,” IEEE Transactions on Wireless Communications, vol. 9,
no. 7, pp. 2310-2319, July 2010. Article (CrossRef Link)

[22] MIT OpenCoursceWare, “MATLAB backslash command to solve Ax = b,” [Online] https://
ocw.mit.edu/courses/mathematics/18-085-computational-science-and-engineering-i-fall-2008/
study-materials/backslash.pdf, Accessed on: January 9, 2021

https://doi.org/10.1007/BF01939404
http://www.scopus.com/inward/record.url?scp=84945910581&partnerID=8YFLogxK
https://doi.org/10.1109/TCPMT.2015.2472403
http://article.sapub.org/10.5923.j.ajis.20140404.03.html
https://doi.org/10.1109/GLOCOM.2005.1578079
https://doi.org/10.1109/TWC.2010.07.091234

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 10, October 2021 3497

Woochan Lee received the B.S. and M.S. degrees in electrical engineering from Seoul
National University, Seoul, Korea, in 2002 and 2005, respectively, and the Ph.D. degree in
electrical and computer engineering from Purdue University, West Lafayette, IN, USA, in
2016. He was commissioned as a Full-time Lecturer and a First Lieutenant with the Korea
Military Academy, Seoul, Korea, from 2005 to 2008. He was a Deputy Director and a Patent
Examiner with Korean Intellectual Property Office, Daejeon, Korea, from 2004 to 2017. In
2017, he joined the Department of Electrical Engineering, Incheon National University,
Incheon, Korea, where he is currently working as an Associate Professor. His current research
interests include computational electromagnetics, numerical analysis, and IoT applications
with machine learning.

Moonseong Kim received the M.S. degree in Mathematics, August 2002 and the Ph.D.
degree in Electrical and Computer Engineering, February 2007 both from Sungkyunkwan
University, Korea. He was a Research Professor at Sungkyunkwan University in 2007. From
December 2007 to October 2009, he was a Research Associate in ECE and CSE, Michigan
State University, USA. He was a Deputy Director and a Patent Examiner with Korean
Intellectual Property Office, Daejeon, Korea, from October 2009 to August 2018. In
September 2018, he joined the Seoul Theological University, Bucheon, Korea, where he is
currently working as an Assistant Professor and the Head of the Department of IT
Convergence Software. His research interests include wired/wireless networking, sensor
networking, mobile computing, network security protocols, and simulations/numerical
analysis. Since March 2009, he has been an editor of KSII Transactions on Internet and
Information Systems (TIIS).

Jaeyoung Park received the B.S. degree in electrical engineering from Seoul National
University, Seoul, Korea, in 2003, and the M.S. and Ph.D. degrees in electrical and computer
engineering from Purdue University, West Lafayette, IN, USA, in 2008 and 2013,
respectively. He was a Research Scientist at Korea Institute of Science and Technology from
2013 to 2015 and was a Senior Research Scientist from 2013 to 2021. In 2021, he joined the
Department of Computer Engineering at Hongik University, Seoul, Korea, where he is
currently working as an Assistant Professor. His research interests include virtual reality,
haptics, human-computer interaction (HCI).

