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Abstract 

 
Artificial intelligence has emerged as the core of the 4th industrial revolution, and large 
amounts of data processing, such as big data technology and rapid data analysis, are inevitable. 
The most fundamental and universal data interpretation technique is an analysis of information 
through regression, which is also the basis of machine learning. Ridge regression is a technique 
of regression that decreases sensitivity to unique or outlier information. The time-consuming 
calculation portion of the matrix computation, however, basically includes the introduction of 
an inverse matrix. As the size of the matrix expands, the matrix solution method becomes a 
major challenge. In this paper, a new algorithm is introduced to enhance the speed of ridge 
regression estimator calculation through series expansion and computation recycle without 
adopting an inverse matrix in the calculation process or other factorization methods. In 
addition, the performances of the proposed algorithm and the existing algorithm were 
compared according to the matrix size. Overall, excellent speed-up of the proposed algorithm 
with good accuracy was demonstrated. 
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1. Introduction 

The rise of the fourth industrial revolution attracted many researchers’ attention to artificial 
intelligence and big data techniques. In particular, interest in machine learning that is a branch 
of artificial intelligence is explosive. Regression analysis (which is a kind of supervised 
learning) that estimates trends by learning the already known data set is the basic technique of 
machine learning [1], and the utilization of the technique has never been reduced. Machine 
learning techniques, including regression, require massive data processing under recent sensor 
data environments. Due to computational limitation, it is hard to adopt these novel machine 
learning techniques especially in IoT (Internet of Things) or mobile devices [2]. As the data 
size grows large, it is a significant concern of how fast the data is processed as well as accurate 
forecasting. 

For radar applications, linear regression can be used to improve target detection 
performance by estimating the clutter ridge [3]. Ridge regression with regularization also helps 
to enhance position accuracy under a strong jamming environment [4]. Thus, ridge regression 
techniques can play an important role in the tremendous data input condition. 

However, ridge regression contains a matrix inverse-related part. Thus the treatment of this 
part takes a large portion of the total time for getting a ridge regression estimator. Therefore, 
implementing a fast regression model can be achieved by accelerating this calculation part. 
The proposed algorithm gets through series expansion and computation recycle without 
adopting an inverse matrix in the calculation process or other matrix factorization techniques. 
The proposed algorithm shows superior performance compared to previously proposed 
algorithms, and it shows an acceptable margin of error. 

This paper’s idea is based initially on the idea proposed by Lee [5]. However, this idea is 
limited to speeding up the acquisition of the regression estimator through Cholesky 
factorization in ordinary least squares methods. This paper expanded its scope to the case of 
ridge regression, developed a new algorithm without any matrix inverse or factorization, and 
verified its performance. 

The rest of this paper is organized as follows. Section 2 reviews prior research on speeding 
up by reducing ridge regression calculation. Section 3 proposes a new algorithm and Section 
4 shows simulation results based on the new algorithm. Section 5 presents conclusions. 

2. Regression Models and Previous Work 
First, system of linear regression function is defined by: 

𝑎𝑎1𝑥𝑥11 + 𝑎𝑎2𝑥𝑥12 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥1𝑛𝑛 = 𝑦𝑦1 
𝑎𝑎1𝑥𝑥21 + 𝑎𝑎2𝑥𝑥22 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥2𝑛𝑛 = 𝑦𝑦2 

 
. 
. 

𝑎𝑎1𝑥𝑥𝑛𝑛1 + 𝑎𝑎2𝑥𝑥𝑛𝑛2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑦𝑦𝑛𝑛 

(1) 

where 𝑥𝑥 is observed value (known data set), and 𝑎𝑎 is coefficient. Based on Equation (1), for 
instance, a system of linear equations can be set up to illustrate the relationship of employment 
rate (corresponding 𝑦𝑦) on scores of 𝑛𝑛 grade points (corresponding 𝑥𝑥). This linear equation is 
represented by a matrix equation of 𝑋𝑋𝑎𝑎 = 𝑦𝑦. Vector 𝑦𝑦 can be projected onto the column space 
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of the matrix X, and the least squares method finds the projected vector 𝑦𝑦 = 𝑦𝑦� , which 
minimizes the sum of squared residuals, as Equation (2). Furthermore, the regression estimator 
𝑎𝑎� is represented as follows [6]: 

𝑦𝑦� = 𝑋𝑋(𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦 = 𝑋𝑋𝑎𝑎�, (2) 

𝑎𝑎� = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑦𝑦 (3) 

Here, 𝑋𝑋+ can be defined as: 

𝑋𝑋+ = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇 

which is the Moore-Penrose generalized inverse [7]. 
The regression coefficient 𝑎𝑎� is linearly combined with the new observed values, and it 

produces the new estimated value 𝑦𝑦�. In other words, once 𝑎𝑎� is found, for example, a new 
student’s employment rate (𝑦𝑦) can be estimated with a new student’s grade points. Therefore, 
to obtain the coefficient 𝑎𝑎� is the core of the regression analysis and machine learning. 

However, when implementing various regression analyses including least squares 
regression, there are differences in performance depending on how the regression estimator 𝑎𝑎� 
is derived. The difference in performance is noticeable as the size of the desired matrix grows. 

There are well-known regression models that have already been proposed, such as lasso 
regression, ridge regression, quantile regression, and progress trees [8]. Of these models, the 
ridge regression has an additional constraint on linear regression coefficients to the ordinary 
least squares model. This additional constraint (λ) is to minimize the sum of the square of 
weights [9]. 

Under these constraints, ridge regression model gives the effect of regularization and more 
stable future predictions. Taking vector-matrix form of ridge regression model, the ridge 
regression estimator (𝛽𝛽) can be obtained as: 

𝛽𝛽(𝜆𝜆) = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇𝑦𝑦 (4) 

Since the calculation of (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 takes a large portion of the total time for getting 
ridge regression estimator, it is required to have accelerated method to obtain ridge regression 
estimator. 

One way to speed up the inverse matrix calculation of ridge regression is factorizing the 
given matrix 𝐴𝐴 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 into matrices such as upper triangular matrix and diagonal 
matrix. Among the methods to factor the given matrix, Singular Value Decomposition (SVD) 
method has the advantage of being able to apply any matrix even if the given matrix 𝐴𝐴 is not 
a square matrix. The SVD method factors the matrix 𝐴𝐴 as follows [10]: 

𝐴𝐴 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 (5) 

where U and V are orthogonal matrices and Σ is a diagonal matrix. However, it needs huge 
calculations to factor an arbitrary matrix with SVD [11]. Another approach is to use Cholesky 
decomposition, which factors the given matrix A as follows: 

𝐴𝐴 = 𝐿𝐿𝐿𝐿𝑇𝑇 = 𝑅𝑅𝑇𝑇𝑅𝑅 (6) 
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where 𝐿𝐿 is a lower triangular matrix and 𝑅𝑅 is an upper triangular matrix. Although Cholesky 
decomposition needs an additional process to factor the matrix, it reduces calculation time and 
has lower computational complexity [12]. It is also known that it is faster than SVD. However, 
it is somewhat unstable in terms of accuracy [13]. 

Another approach based on QR decomposition, which Q represents an orthogonal matrix, 
and R represents an upper triangular matrix, was previously proposed. There are different 
methods to compute QR decomposition such as Gram-Schmidt Orthonormalization, 
Householder Reflections and Givens rotation [14]. The method factorizes given matrix A into: 

𝐴𝐴 = 𝑄𝑄𝑅𝑅 (7) 

with Q and R matrices. QR decomposition reduces computations through factorization like the 
above prior researches. 

However, a numerical roundoff error to make Q prone to lose orthogonality, which is 
defined as follows: 

𝑓𝑓𝑓𝑓(𝑥𝑥,𝑦𝑦) = (𝑥𝑥,𝑦𝑦) + 𝛿𝛿 (8) 

where x and y are two vectors and δ is the error from rounding operation, is likely to occur in 
a classical Gram-Schmidt Orthonormalization process while constructing Q matrix [15]. Also, 
Householder Reflections and Givens rotation to perform QR factorization are known to be 
slower than Cholesky decomposition [16]. 

3. The Proposed Algorithm 
Total computing time heavily depends on the calculation of an inverse related part, and the 
several existing methods are using matrix factorization. It takes much time to compute an 
inverse matrix directly or to factor matrix directly into the desired form. The proposed 
algorithm approximates an inverse matrix through series expansion and exploits computation 
recycle instead of computing an inverse matrix directly or adopting any matrix factorization 
techniques. 

Now, the given matrix 𝐴𝐴 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1 is approximated through a series expansion of 
the inverse matrix as below: 

(𝜆𝜆 + 𝐾𝐾)−1 = 𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3 + 𝐾𝐾4 … (9) 

where ‖𝐾𝐾‖ ≪ 1 [17]. 
For the series expansion to converge, the conditions of ‖K‖≪1 should be absolutely 

satisfied. If the norm of the matrix is greater than 1, the series expansion must diverge and the 
error increases, resulting in inaccurate approximation. 

With norm condition satisfied, the norm of the matrix 𝐾𝐾 is much less than 1 during the 
series expansion process, and the norms of the other matrix terms such as 𝐾𝐾2 and 𝐾𝐾3 are 
gradually smaller as the order of terms increases in the process of expansion. Therefore, the 
first few terms are sufficient to provide a good approximation of the inverse. For example, 
Equation (9) can be approximated with 3 expansion terms (3 terms expansion case): 

(𝜆𝜆 + 𝐾𝐾)−1 ≈ 𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 (10) 
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where ‖𝐾𝐾‖ ≪ 1.  It is also possible to add more terms to Equation (10) to improve 
approximation accuracy. With this knowledge, to obtain ridge regression estimator with series 
expansion, the part (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1  in the original Equation (4) can be changed into the 
expression starting with an identity matrix as Equation (10). From Equation (4), the expression 
for ridge regression estimator can be transformed as: 

�̂�𝛽 = �𝜆𝜆 �𝜆𝜆 +
1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋��

−1

𝑋𝑋𝑇𝑇𝑦𝑦 

=
1
𝜆𝜆
�𝜆𝜆 +

1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋�

−1
𝑋𝑋𝑇𝑇𝑦𝑦 

(11) 

Recalling Equation (10), Equation (11) takes the form of (10) when 1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 is substituted 

into 𝐾𝐾. To expand Equation (11) in series, �1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� should be much less than 1 to make 

overall system converge. To satisfy this strict condition, just the value of 𝜆𝜆 can be adjusted 
since the matrix 𝑋𝑋 is already given. In this paper, the initial setting is 𝜆𝜆 = 10𝑛𝑛2 (where 𝑛𝑛 is 
the column size of the matrix 𝑋𝑋 and 𝑋𝑋𝑇𝑇𝑋𝑋 is a square matrix of order 𝑛𝑛), and definitely, other 
settings are also possible. Therefore, the value of 𝜆𝜆 depends on the size of the matrix 𝑋𝑋. This 
assumption about regularization factor 𝜆𝜆 is reasonable because the emphasis on the diagonal 
element takes effect when the diagonal element is greater than off-diagonal elements. 

Because it has not known the method that gives an optimal value of 𝜆𝜆 [18], the value of 𝜆𝜆 
can be assumed to be determined freely in this paper. Therefore, instead of choosing adaptive 
values according to the data characteristics of the given matrix, it is also possible to choose 
any value that meets the convergence condition, for example, 𝜆𝜆 = 109. It should be noted that 
the choice of 𝜆𝜆 is chosen to compensate for the collinearity of the data set in a real-world 
application. 

Expanding Equation (11), the final form is obtained as: 
 

�̂�𝛽 =
1
𝜆𝜆
�𝜆𝜆 −

1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 +

1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)2� (𝑋𝑋𝑇𝑇𝑦𝑦) (12) 

 

Next, a new approach to calculate the series expansion effectively is proposed. The new 
approach reuses the previously calculated matrix-vector products in the next matrix calculation. 
In the series expansion of (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1, 𝑋𝑋𝑇𝑇𝑦𝑦 and 𝑋𝑋𝑇𝑇𝑋𝑋 multiplied by 𝑋𝑋𝑇𝑇𝑦𝑦 are repeated as 
shown in Equation (12). Based on this observation, we obtain a much faster result by 
multiplying −1

𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋 by (𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) that is calculated in the previous step than calculating 

1
𝜆𝜆𝑘𝑘

(𝑋𝑋𝑇𝑇𝑋𝑋)𝑘𝑘(𝑋𝑋𝑇𝑇𝑦𝑦) through multiplying 𝑋𝑋𝑇𝑇𝑋𝑋 by 𝑘𝑘 times in 𝑘𝑘th step. This speed-up is since it we 
can change forward matrix-matrix operation into backward matrix-vector operation. Fig. 1 
presents the comparison between the forward matrix-matrix operation and the backward 
matrix-vector operation. The computational load difference between two methods considering 
the computational complexity of the product of the 𝑚𝑚 × 𝑛𝑛 matrix and 𝑛𝑛 × 1 column vector is 
significant. 
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(𝐴𝐴𝑇𝑇𝐴𝐴)𝑦𝑦 = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚

��
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
��

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

𝑚𝑚𝑛𝑛2 + 𝑛𝑛2 (flops) 

(a) Forward direction calculation 

𝐴𝐴𝑇𝑇(𝐴𝐴𝑦𝑦) = �
𝑎𝑎11 ⋯ 𝑎𝑎1𝑚𝑚
⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 ⋯ 𝑎𝑎𝑛𝑛𝑚𝑚

��
𝑎𝑎11 ⋯ 𝑎𝑎1𝑛𝑛
⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚1 ⋯ 𝑎𝑎𝑚𝑚𝑛𝑛
��

𝑦𝑦1
⋮
𝑦𝑦𝑛𝑛
� 

𝑛𝑛𝑚𝑚 + 𝑛𝑛𝑚𝑚 = 2𝑛𝑛𝑚𝑚 (flops) 

(b) Backward direction calculation 

Fig. 1. Flops comparison of matrix-matrix-vector operations 
 
Specifically, in the worst-case scenario, the computational complexity is 𝑛𝑛2 + 𝑛𝑛3 + 𝑛𝑛2 

flops when the Equation (11) is computed with the forward calculation by multiplying (𝑋𝑋𝑇𝑇𝑋𝑋) 
from the beginning (Fig. 1. (a)) like Equation (13):  

�̂�𝛽 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) −
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) +
1
𝜆𝜆3

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦) (13) 

However, the backward calculation by the form of Equation (13) takes only 2𝑛𝑛2 + 2𝑛𝑛2 
flops: 

�̂�𝛽 =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) −
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑋𝑋)(
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦)) +
1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑋𝑋)(
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦)) (14) 

This is because the term of 1
𝜆𝜆

(𝑋𝑋𝑇𝑇𝑦𝑦) in the first step of Equation (14) is recycled to obtain 
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦)  in the second step, and 1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)(𝑋𝑋𝑇𝑇𝑦𝑦)  is also reused to calculate 
1
𝜆𝜆2

(𝑋𝑋𝑇𝑇𝑋𝑋)2(𝑋𝑋𝑇𝑇𝑦𝑦) in the third step. Since each matrix-vector product takes only 2𝑛𝑛2 flops, the 
computational complexity of the backward matrix-vector operation is 𝑂𝑂(𝑛𝑛2) compared to that 
of the forward matrix-matrix operation, of which the computational complexity is 𝑂𝑂(𝑛𝑛3). 
Therefore, the proposed recycling algorithm shows much better performance in terms of speed 
than previous algorithms. Table 1 shows the pseudo-code of the proposed recycling algorithm. 

Table 1. Expansion term reuse algorithm for the acceleration of matrix computation 

Calculation of 𝜷𝜷 

X_mul ← XTX 
b1 ← XTy 
b2 ← -(1/lambda)∙(X_mul∙b1) 
b3 ← -(1/lambda)∙(X_mul∙b2) 
b4 ← -(1/lambda)∙(X_mul∙b3) 
… 
beta ← -(1/lambda)∙(b1+b2+b3+b4) 
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Actually, Equation (4) can be converted Equation (15) by the well-known matrix inversion 
lemma [19-21]. By this lemma, the size of matrix inversion part can be further reduced when 
𝑛𝑛 is greater than 𝑚𝑚. Thus, the inverse part ((𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1) is now ((𝑋𝑋𝑋𝑋𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1), then the 
size of the inverse part becomes 𝑚𝑚2 , which is much smaller than 𝑛𝑛2  when 𝑛𝑛 ≫ 𝑚𝑚 . The 
derivation of modified form of (4) is as follows: 

𝛽𝛽 = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇y 

    =
1
𝜆𝜆

(𝜆𝜆 − 𝜆𝜆 + 𝜆𝜆(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1)𝑋𝑋𝑇𝑇𝑦𝑦 

    =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − (𝜆𝜆 − 𝜆𝜆(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1)𝑋𝑋𝑇𝑇𝑦𝑦 

    =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − (𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋 − 𝜆𝜆𝜆𝜆)(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦 

    =
1
𝜆𝜆

(𝑋𝑋𝑇𝑇 − 𝑋𝑋𝑇𝑇𝑋𝑋(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦 

    =
1
𝜆𝜆
𝑋𝑋𝑇𝑇(𝜆𝜆 − 𝑋𝑋(𝜆𝜆𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇)𝑦𝑦 

    = 𝑋𝑋𝑇𝑇 �
1
𝜆𝜆
𝜆𝜆 −

1
𝜆𝜆
�𝜆𝜆 + 𝑋𝑋𝑇𝑇𝑋𝑋

1
𝜆𝜆

 �
−1
𝑋𝑋𝑇𝑇

1
𝜆𝜆

  �𝑦𝑦 

    = 𝑋𝑋𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇 + 𝜆𝜆𝜆𝜆)−1𝑦𝑦 

(15) 

 
The pseudo-code of the new size-reduced algorithm based on the transformation of 

Equation (15) is shown in Table 2. The significant differences compared to the original 
algorithm described in Table 1 are 1) the value of variable X_mul, 2) the stating value of b1, 
and 3) the final form of beta. 

Table 2. Size-reduced expansion term reuse algorithm by the matrix inversion lemma 

Calculation of 𝜷𝜷 

X_mul ← XXT 
b1 ← y 
b2 ← -(1/lambda)∙(X_mul∙b1) 
b3 ← -(1/lambda)∙(X_mul∙b2) 
b4 ← -(1/lambda)∙(X_mul∙b3) 
… 
beta ← -XT∙(1/lambda)∙(b1+b2+b3+b4) 

 

4. Simulation Results and Analysis 
We measured the time of acquisition of the ridge regression estimator (𝛽𝛽) per each algorithm 
and compared the proposed algorithm with algorithms based on the built-in functions from 
commercial MATLAB (an abbreviation of MATrix LABoratory) program by MathWorks. 
First, the matrix 𝑀𝑀 = 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆 in Equation (4) (𝛽𝛽(𝜆𝜆) = (𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆)−1𝑋𝑋𝑇𝑇𝑦𝑦) is defined, then 
the following four algorithms are executed: 
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1) After deriving inverse matrix by MATLAB’s inv, then multiply this with 𝑏𝑏 = 𝑋𝑋𝑇𝑇𝑦𝑦,  
2) By MATLAB’s backslash, derive 𝛽𝛽(𝜆𝜆) = 𝑀𝑀\𝑏𝑏,  
3) 𝑀𝑀 is factorized by Cholesky decomposition, then apply backward/forward substitution 

(self-coded),  
4) Apply proposed series expansion and computation recycle algorithm (3 terms 

expansion and 4 terms expansion cases). 
The dimension of the matrix 𝑋𝑋 is 𝑚𝑚 × 𝑛𝑛, where 𝑚𝑚 = 1,000 and n is in range of 1,000 to 

15,000 in units of 1,000. According to the value of 𝑛𝑛, the size of the matrix 𝑋𝑋𝑇𝑇𝑋𝑋 lies between 
1,000 by 1,000 and 15,000 by 15,000. The elements of the matrix 𝑋𝑋 are generated by the 
MATLAB command rand, which creates a matrix whose elements uniformly distributed in 
the interval [0, 1]. In this fictional data set, the collinearity of the columns is not a significant 
issue as the size of the matrix grows. We executed the simulation using Intel i7-7700 processor 
@ 3.6GHz, RAM 16GB and MATLAB, 2018b. We measured the total time in terms of the 
CPU times with MATLAB command cputime for each experiment. 

It should be noted that the MATLAB command backslash does not necessarily use 
Gaussian elimination. It selects an optimized method according to the shape of the matrix, 
which can be reorganized as shown in Fig. 2 [22]. 

 

 
Fig. 1. Algorithms for MATLAB built-in function backslash (figure reconstructed from [22]) 

 
Table 3 shows the comparison of computation cost between the proposed algorithm and 

Cholesky factorization-based algorithm. To be specific, it takes 𝑚𝑚𝑛𝑛2 flops to calculate 𝑋𝑋𝑇𝑇𝑋𝑋, 
1
3
𝑛𝑛3 flops to perform initial Cholesky factorization, and 2𝑛𝑛2 flops to do backward/forward 

substitution. The MATLAB command backslash also might be executed by selecting 
Cholesky factorization. 

MATLAB's 
backslash

Upper or lower 
triangluar matrix

Backward/Forward 
substitution

Permutation of 
triangular matrix

Permuted back 
substitution

Symmetric or 
Hermitian matrix Cholesky

Hessenberg matrix Reduce to upper 
triangluar

Square matrix PA=LU

Not square matrix Househoder QR
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Table 3. Computation cost comparison of proposed algorithm vs. Cholesky factorization  
(common 𝑋𝑋𝑇𝑇𝑋𝑋 matrix building: 𝑚𝑚𝑛𝑛2 (flops)) 

Class Operations Count Notes 

Proposed 
algorithm 

1) 𝑚𝑚𝑛𝑛2 + 6𝑛𝑛2 

2) 𝑚𝑚𝑛𝑛2 + 8𝑛𝑛2 

1) 3 terms expansion 
(𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2) 

2) 4 terms expansion 
(𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3) 

 
Fig. 3 presents the comparison of computation time between the proposed algorithm with 

a 3 terms expansion (𝜆𝜆 − 𝐾𝐾 + 𝐾𝐾2) and other algorithms. The MATLAB’s inv command has 
the worst performance. Assuming implemented by Gauss-Jordan elimination, its 
computational cost is known as approximately 𝑛𝑛3 flops [7]. Our proposed algorithm has the 
best performance compared to MATLAB’s inv command and Cholesky factorization-based 
algorithms. It also should be noted that the MATLAB built-in command-based algorithms can 
exaggerate their performance. For example, even though the time complexity of the algorithm 
of the MATLAB’s built-in function is 𝑂𝑂(𝑛𝑛3), its actual performance (time complexity) can be 
𝑂𝑂(𝑛𝑛2) due to MATLAB’s optimization. 

Fig. 4 presents the comparison between our algorithm and other algorithms again with the 
time axis in log-scale to recognize clearly the performance improvement of the proposed 
algorithm. When the size of the matrix is small, the performance improvement is not clear 
compared to MATLALB’s inv, backslash, or self-implemented Cholesky factorization. 
However, the performance improvement of the proposed algorithm is obvious as the size of 
the matrix increases. 

 

Fig. 3. Computation time comparison (3 terms expansion) 
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Fig. 4. Computation time comparison (log-scale, 3 terms expansion) 

 
Fig. 5 demonstrates the error performance of the proposed algorithm. Generally, the error 

performance of MATLAB backslash command has been verified, we evaluated the error 
performance of our algorithm with reference to MATLAB’s backslash command. As we 
expected, approximation by series expansion obviously has the error. However, the relative 
error range is only about 10-4 to 10-6, which is acceptable. In this paper, we use 𝜆𝜆 = 10𝑛𝑛2, but 
the error will be reduced further if we use a larger 𝜆𝜆 value. 

 

Fig. 5. Error Comparison (3 terms expansion) 
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Fig. 6 shows the comparison between the proposed algorithm with 4 terms expansion (𝜆𝜆 −

𝐾𝐾 + 𝐾𝐾2 − 𝐾𝐾3) and other algorithms. Fig. 7 presents Fig. 6 again with the time axis in log-
scale. When the size of the matrix is small, the performance improvement of our proposed 
algorithm with 4 terms expansion is not definite compared to other algorithms. However, the 
performance improvement can be confirmed as the size of the matrix increases. Definitely, 4 
terms expansion case is slower than 3 terms expansion case due to the inclusion of more terms, 
but its error performance is better than 3 terms expansion case. 

 

Fig. 6. Computation time comparison (4 terms expansion) 

 

 

Fig. 7. Computation time comparison (log-scale, 4 terms expansion) 
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Fig. 8. Performance comparison: the original version vs. size reduction version 

 
Fig. 8 represents the performance comparison between the original version based on Table 

1 (colored red) and the size-reduced version based on Table 2 (colored blue). The simulation 
results are actually focusing on the original algorithm, which is basically better in 𝑚𝑚 ≫ 𝑛𝑛 case. 
But if  𝑛𝑛 ≫ 𝑚𝑚 case, the size-reduced version performs better as shown in Fig. 8. 

Fig. 9 presents the error analysis of overall algorithms with 𝜆𝜆 = 10𝑛𝑛2 . The error 
performance of the 3 terms expansion is also included for the comparison. Since the higher 
number of terms are included, the closer the real series expansion of the inverse matrix. The 
error of the 4 terms expansion case is about 1

100
 of that of the 3 terms expansion case. 

 

Fig. 9. Error Analysis (𝜆𝜆 = 10𝑛𝑛2) 
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Fig. 10 illustrates an error analysis with 𝜆𝜆 = 𝑛𝑛2, which is a smaller 𝜆𝜆 case than previous 
error analysis. The smaller 𝜆𝜆 means the matrix is less likely to be an identity matrix. Thus it 
may reflect the actual data characteristics in the real-world applications. However, as 𝜆𝜆 value 
decreases, the relative error increases because the norm of �1

𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� becomes bigger than the 

previous case (Fig. 9). To be specific, the larger norm of �1
𝜆𝜆
𝑋𝑋𝑇𝑇𝑋𝑋� will cause that series 

expansion is less likely to be equal to the actual inverse part. Thus, 𝜆𝜆 should be reasonably 
chosen. 

 

Fig. 10. Error Analysis (𝜆𝜆 = 𝑛𝑛2) 

5. Conclusion 

With the advent of big data applications like radar applications, the data size becomes huge, 
and the information is required to be processed quickly. In this paper, a new algorithm to 
improve the computational efficiency of ridge regression is proposed. The proposed algorithm 
uses series expansion and reuses matrix computation parts without inverse matrix and matrix 
decomposition. The performance is superior to existing algorithms in terms of speed, and the 
result shows good accuracy. For the 4 terms expansion example with 15,000 unknown case, 
the proposed algorithm shows approximately 5.2 times faster than MATLAB’s backslash-
based algorithm, with less than 10-8 relative error. 

Currently, large regularization constraints λ so as to series expansion equal to the inverse 
part is using. A more generalized formula to adopt arbitrary regularization constraints λ will 
be pursued in future work. The improvement of regression performance will contribute to the 
development of artificial intelligence and machine learning, which are the key of the fourth 
industrial revolution. 
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