• Title/Summary/Keyword: machine direction

Search Result 695, Processing Time 0.025 seconds

A Study on the Influencing Factors on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 실험인자의 영향에 관한 연구)

  • 한민철;김기정;백병훈;한천구;송성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.361-364
    • /
    • 2002
  • This paper discusses the influencing factors such as coring position, height to diameter ratio of core specimen(h/d) and coring torque on the strength estimation of concrete by small site coring method in order to verify the validities of small size core method. According to results, as for the influence of drilling position, when core specimens are obtained from the place parallel to placing direction, compressive strength of core specimens are higher than those perpendicular to placing direction. This is due to the loss of the area of core specimen perpendicular to plating direction by bleeding. And in case of $\phi$ 24mm core specimen, when vertical drilling against placing direction is taken. compressive strength of core specimen obtained at the bottom of the structure is higher than that at the top of the structure. As for the influence of height to depth ratio, as h/d ratio increases compressive strength shows to be decreased. As for the influences of rotation speed of drilling machine, as its speed goes up, compressive strength decreases, regardless of core diameter.

  • PDF

Prediction of Initiation Location and Direction of Fretting Fatigue Crack (프레팅 피로 균열의 발생 위치 및 방향 예측)

  • Huh, Yong-Hak;R. E. Edwards;M.W. Brown;E.R. de Ios Rios
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1185-1192
    • /
    • 2003
  • Governing parameters for determination of the location of crack initiation and direction of crack initiation were investigated by performing fretting fatigue tests and analysis on Al 2024-T351. Fatigue tests were carried out using biaxial fatigue machine. It was shown that the dominant fatigue crack tended to initiate at the outer edge of one of the four bridge pads, growing at an angle beneath a pad, before turning perpendicular to the orientation of the axial load. Distribution of stresses generated during fretting fatigue loading along the interface was calculated by elastic FE simulation. It can be known that the location of crack initiation can be predicted by using the maximum tangential stress range. Futhermore, the crack initiation direction can also be predicted by a maximum tangential stress range.

A Study on the Machined Surface Morphology of Laminate Composite (적층구조 복합재료의 절삭면 형상에 관한 연구)

  • Wang, Duck Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.130-138
    • /
    • 1995
  • Machined graphite/epoxy surfaces were studied by using SEM (Scanning Electron Microscopy), surface profilometry and its analysis to determine suitable surface describing parameters for machined unidirectional and multidirectional laminate composite. The surface roughness and profile are found to be highly depdndent on the fiber layup direction and the measurement direction. It was possible to machine 90 .deg. and -45 .deg. plies due to the adjacent plies, which were holding those plies. It was found that the microgeometrical variations in terms of roughness parameters $R_{a}$ without $D_{y}$(Maximum Damage Depth) region and $D_{y}$are better descriptors of the machined laminate composite surface than commonly used roughness parameters $R_{a}$and $R_{max}$ The characteristics of surface profiles in laminate composite are well represented in CPD (Cumulative Probability Distribution) plot and PPD (Percentage Probability Density) plot. Edge-trimmed multidirectional laminate surfaces are Gaussian and random for profiles measured along the tool movement direction, they are periodic and non-Gaussian in the direction perpendicular to the tool movement.t.ent.t.

  • PDF

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

A Study on the Application of the Curvature Theory of Ruled Surfaces for the Development of Five-Axis NC Machine Real-Time Control Algorithm (5축 NC 기계의 실시간 제어기법 개발을 위한 룰드 서피스 곡률 이론의 적용 연구)

  • Kim, Jae-Hui;Yu, Beom-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents the real time control method of 5-axis NC machine for high precision and productivity based on the curvature theory, of a ruled surface. The trajectory, of NC machine is described by, way of a ruled surface generated by the points on part surface and tool axis direction vector. The curvature theory, of a ruled surface is then applied to deter-mine the motion parameters of the 5-axis machine for control. The controller computes position, orientation, and differential motion parameters of the tool in each sampling period. The real-time approach produces smoother surfaces and requires substantially less machining time compared to conventional off-line approaches. The propose real-time control method based of the curvature theory of a ruled surface may give new methodology of precision 5-axis machine control.

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

New technology Trends on Friction Stir Welding Based on Milling Process in terms of Tools, Machine and Applied Parts (밀링기반 마찰교반접합 신기술동향: 공구, 장비 및 응용부품)

  • Noh, Joong-Suk;Kim, Ju-Ho;Go, Gun-Ho;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.37-44
    • /
    • 2013
  • Friction stir welding (FSW) is a solid state joining technique that has expanded rapidly since its development in 1991 and has numerous applications in a wide variety of industries. This paper introduces the basic principles of friction stir welding (FSW) and presents a survey of the latest technologies and applications in the field. The basic principles that are discussed include the terminology, tool/workpiece processes, FSW merits and process variants. In particular, the process variants including the rotation speed and traveling speed are discussed, which include the defect-free zone in an oxygen free copper and Al alloy, respectively. Multiple aspects of the FSW machine are developed, including a horizontal 2D FSW machine and a hybrid complex FSW machine. The latest applications are introduced, with an emphasis on the recent advances in the aerospace, automotive, and IT display industries. Finally, the direction for future research and potential applications are examined.

A Study on 'Diagram' as a Digital Design process - Through G. Deleuze's 'machine abstraite' and Peter Eisenman, Ben Van Berkel's 'Diagram'- (디지털 디자인 프로세스로 본 다이어그램(Diagram)에 관한 연구 - 질 들뢰즈의 '추상기계'와 피터 아이젠만, 벤 반 버클의 '다이어그램'을 중심으로 -)

  • Kang Hoon
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.3 s.56
    • /
    • pp.201-210
    • /
    • 2006
  • Among the architects who use diagrams as a digital design process, especially through Peter Eisenman and Ben van Berkel's works, we have specifically got the meaning of their diagrams. Their diagrams act as 'the block of becoming' and we can regard the diagrams not only as a tool of devenir including architect's root thoughts beyond a tool of schematic presentation, but also as architect's intention including devenir thought. And in the case of diagrams which the architects use, we can recognize that architects' intentions are to think that Deleuze's 'machine abstraite' evolve the diagram into various and transformed form. That is to say, Peter Eisenman interprets the machine abstraite as a root thought of devenir by using diagram as medium to reveal the virtual. And Ben van Berkel transforms the diagram by including all external conditions into selected diagram which shows the abstract relations to the elements. We can get the meaning of the machine abstraite from these cases well. This study will play an important role in giving good usage of the diagram in making a form of contemporary digital architecture and showing the direction of form creation field.

A Study on Human Recognition Experiments with Handwritten Digit for Machine Recognition of Handwritten Digit (필기 숫자의 기계 인식을 위한 인간의 필기 숫자 인식 실험에 대한 고찰)

  • Yoon, Sung-Soo;Chung, Hyun-Sook;Yi, Kwang-Oh;Lee, Yill-Byeong;Lee, Sang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.373-380
    • /
    • 2008
  • So far there have been many researches on machine-based recognition of handwritten digit. But we have not yet attained the level of performance that can be satisfactory to men. The dissatisfaction with the performance of machine comes from not only the low accuracy of recognition but also the dissimilarity of the recognition results between man and machine. To reduce the difference of machine from man we first made an experiment with the human recognition of handwritten digits and then inquiry into the way of the human recognition that makes the results of men different from that of machine. We found out the attributes that play an important role in the human recognition process through the analysis of the experimental results like uni- and bi-directional confused pairs of digits, several ones unmixed up with another and the redundancy of mis-recognition, and proposed the approach direction to be able to improve the accuracy of the machine-based recognition, and furthermore the similarity in the recognition results of men and machine on the basis of the found facts above.

Calibration/Compensation of Errors of the Touch Probe (접촉식 프로브의 오차교정 및 보정기술)

  • 박희재;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2081-2087
    • /
    • 1994
  • Touch trigger probes are widely used for inspection purposed in the CMM(Coordinate meauring machine) or machine tool. The errors introduced by measurement probe are fairy systematic, thus can be calibrated and compensated properly. This paper presents a technique for the error calibration and compensation of the probe errors, which can be easily applicable to the manufacturers and users of the measurement probe. The probe coordinate system is defined for the probe error assessment, and a reference sphere ball is measured, and the probe errors are calibrated. The calibrated probe errors are represented in the 3D error map and 2D error map along probing direction. Detail algorithms for the error compensation are proposed.