• Title/Summary/Keyword: mach number

Search Result 677, Processing Time 0.028 seconds

Transonic Magnetohydrodynamic Turbulence

  • LEE HYESOOK;RYU DONGSU;KIM JONGSOO;JONES T. W.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.321-323
    • /
    • 2001
  • Compressible, magnetohydrodynamic (MHD) turbulence in two dimension is studied through high-resolution, numerical simulations with the isothermal equation of state. First, hydrodynamic turbulence with Mach number $(M)_{rms}\;\~$1 is generated by enforcing a random force. Next, initial, uniform magnetic field of various strengths with Alfvenic Mach number Ma $\gg$ 1 is added. Then, the simulations are followed until MHD turbulence is fully developed. Such turbulence is expected to exist in a variety of astrophysical environments including clusters of galaxies. Although no dissipation is included explicitly in our simulations, truncation errors produce dissipation which induces numerical resistivity. It mimics a hyper-resistivity in our second-order accurate code. After saturation, the resulting flows are categorized as SF (strong field), WF (weak field), and VWF (very weak field) classes respectively, depending on the average magnetic field strength described with Alfvenic Mach number, $(Ma)_{rms}{\ge}1$, $(Ma)_{rms}{\~}1$, and $(Ma)_{rms}{\gg}1$. The characteristics of each class are discussed.

  • PDF

Preliminary Design of Movable Air-Turbo Ramjet Engine Intake

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok;Lee, Dae-Sung;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.480-485
    • /
    • 2008
  • In this study, two types of ramjet intake were designed for the flight condition of Mach number 2 and 5 and numerical analysis was performed. In order to widen the flight envelope range(Mach number $2{\sim}6$), movable intake concept was applied. The central body was designed so that the capture area ratio which is one of most important factors of ramjet intake design could be adjusted. And various types of cowl and movable insert part of shell were designed in order to control throat area which could increase total pressure recovery. The numerical results showed that the designed ramjet intake could be applied in various flights Mach number.

  • PDF

ACCELERATION OF COSMIC RAYS AT COSMIC SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Nonthermal particles can be produced due to incomplete thermalization at collisionless shocks and further accelerated to very high energies via diffusive shock acceleration. In a previous study we explored the cosmic ray (CR) acceleration at cosmic shocks through numerical simulations of CR modified, quasi-parallel shocks in 1D plane-parallel geometry with the physical parameters relevant for the shocks emerging in the large scale structure formation of the universe (Kang & Jones 2002). Specifically we considered pancake shocks driven by accretion flows with $U_o = 1500 km\;s^{-l}$ and the preshock gas temperature of $T_o = 10^4 - 10^8K$. In order to consider the CR acceleration at shocks with a broader range of physical properties, in this contribution we present additional simulations with accretion flows with $U_o = 75 - 1500 km\;s^{-l}$ and $T_o = 10^4K$. We also compare the new simulation results with those reported in the previous study. For a given Mach number, shocks with higher speeds accelerate CRs faster with a greater number of particles, since the acceleration time scale is $t_{acc}\;{\propto}\;U_o^{-2}$. However, two shocks with a same Mach number but with different shock speeds evolve qualitatively similarly when the results are presented in terms of diffusion length and time scales. Therefore, the time asymptotic value for the fraction of shock kinetic energy transferred to CRs is mainly controlled by shock Mach number rather than shock speed. Although the CR acceleration efficiency depends weakly on a well-constrained injection parameter, $\epsilon$, and on shock speed for low shock Mach numbers, the dependence disappears for high shock Mach numbers. We present the 'CR energy ratio', ${\phi}(M_s)$, for a wide range of shock parameters and for $\epsilon$ = 0.2 - 0.3 at terminal time of our simulations. We suggest that these values can be considered as time-asymptotic values for the CR acceleration efficiency, since the time-dependent evolution of CR modified shocks has become approximately self-similar before the terminal time.

Accurate and Robust Computations of Gas-Liquid Two-Phase Flows Part 2: Preconditioned Two-Phase Schemes for All Speeds (액체-기체 2상 유동장의 정확하고 강건한 해석 Part 2: 전 마하수 영역 해석을 위한 예조건화)

  • Ihm, Seung-Won;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Two-phase RoeM and AUSMPW+ schemes are preconditioned for the simulation of all Mach number flows, which are generally of interest for many gas-liquid two-phase application problems, because of large speed of sound in liquid region and low speed of sound in mixture or gas region. Conventional characteristic based schemes lose their accuracy or robustness in low Mach number flows, because their numerical dissipation terms are scaled by speed of sound, which is too large compared with local velocity magnitude in a low Mach region. All speed versions of RoeM and AUSMPW+ reflect the eigenvalues of the preconditioned governing system, which have the same order of magnitude even in low Mach number region. From the asymptotic analysis, it is observed that the discretized system by the developed schemes is consistent with the continuum system in the incompressible limit. The numerical results show the accurate and robust behavior of the proposed shcemes for all speed two-phase flows.

Study of the Weak Shock Wave Discharged from an Annular Tube (환형 관출구로부터 방출되는 약한 충격파에 관한 연구)

  • Kweon Yong-Hun;Lee Dong-Hoon;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.113-116
    • /
    • 2002
  • The shock wave discharged from an annular duct leads to very complicated flow features, such as Mach stem, spherical waves, and vortex rings. In the current study, the merging phenomenon and propagation characteristics of the shock wave are numerically investigated using a CFD method. The Harten-Yee's total variation diminishing (TVD) scheme is used to the unsteady, axisymmetric, two-dimensional, compressible Euler equations. The Mach number of incident shock wave $M_s$ is varied in the range below 2.0. The computational results are visualized to observe the major features of the annular shock waves discharged from the tube. On the symmetric axis, the peak pressure produced by the shock wave and its location depend upon strongly the radius of the annular tubes. A Mach stem is generated along the symmetric axis of the annular tubes.

  • PDF

The visibility variation of the mach-zehnder optical fiber interferometerdue to birefringences, input states of polarization and optical losses (복굴절, 입력 편광상태 및 광손실이 광섬유간섭계의 visibility에 미치는 영향)

  • 강현서;이영택;이경식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.140-147
    • /
    • 1996
  • The output of the mach-zehnder optical fiber interferometer varies with birefringences existing in the figer arms. New equations experessing for the visibility of the mach-zehnder interferometer were derived in terms of a number of parameters related to the birefringences, the input SOP and the optical losses. Based on the equations the visibility of the interferometer was simulated in different cases. Some maximum visibility conditons were also presented.

  • PDF

Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow (천음속 익형 유동에서 비평형 응축이 Drag Divergence Mach Number에 미치는 영향에 관한 수치 해석적 연구)

  • Choi, Seung Min;Kang, Hui Bo;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.785-792
    • /
    • 2016
  • In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same ${\alpha}$, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in ${\Phi}_0$. For the same $M_{\infty}$, ${\Phi}_0$, and $T_0$, the length of the non-equilibrium condensation zone ${\Delta}_z$ decreases with increasing ${\Phi}_0$. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient $C_D$ decreases with an increase in ${\Phi}_0$ for the same $M_{\infty}$ and ${\alpha}$. For the same ${\alpha}$, $M_D$ increases with increasing ${\Phi}_0$, while $M_D$ decreases with an increase in ${\alpha}$.

Effect of Secondary Flow Injection on Flow Charncteristics in 3-Dimensional Supersonic Nozzle (초음속 노즐 내 2차 분사 slot 개수에 따른 유동 특성 변화)

  • Song, J.W.;Yi, J.J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3529-3533
    • /
    • 2007
  • The advantages of the SITVC(secondary injection thrust vector control) technique over mechanical thrust vector systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design mach number 3. The effect of injection hole number and shape of secondary jet on the mach number distribution of SITVC were investigated. The standard ${\kappa}$ - ${\epsilon}$ turbulence model solved the complex three-dimensional nozzle flows perturbed by the secondary gas jet. The numerical code was validated by experiment. The results showed that the mach number distribution of circular and square nozzle are similar each other. As number of second injection hole increasing, a effect of deflection was decreased.

  • PDF

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.

Evolution of particle acceleration and instabilities in galaxy cluster shocks

  • van Marle, Allard Jan;Ryu, Dongsu;Kang, Hyesung;Ha, Ji-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.42.2-43
    • /
    • 2018
  • When galaxy clusters interact, the intergalactic gas collides, forming shocks that are characterized by a low sonic Mach number (~3) but a comparatively high Alfvenic Mach number (~30). Such shocks behave differently from the more common astrophysical shocks, which tend to have higher sonic Mach numbers. We wish to determine whether these shocks, despite their low sonic Mach number, are capable of accelerating particles and thereby contributing to the cosmic ray spectrum. Using the PIC-MHD method, which separates the gas into a thermal and a non-thermal component to increase computational efficiency, and relying on existing PIC simulations to determine the rate at which non-thermal particles are injected in the shock, we investigate the evolution of galaxy cluster shocks and their ability to accelerate particles. Depending on the chosen injection fraction of non-thermal particles into the shock, we find that even low-Mach shocks are capable of accelerating particles. However, the interaction between supra-thermal particles and the local magnetic field triggers instabilities and turbulence in the magnetic field. This causes the shock to weaken, which in turn reduces the effectiveness of the supra-thermal particle injection. We investigate how this influences the shock evolution by reducing the particle injection rate and energy and find that a reduction of the particle injection fraction at this stage causes an immediate reduction of both upstream and downstream instabilities. This inhibits particle acceleration. Over time, as the instabilities fade, the shock surface straightens, allowing the shock to recover. Eventually, we would expect this to increase the efficiency of the particle injection and acceleration to previous levels, starting the same series of events in an ongoing cycle of increasing and decreasing particle acceleration.

  • PDF