• 제목/요약/키워드: mRNA transfection

검색결과 159건 처리시간 0.024초

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi;Heo, Sun-Hee;Kim, Jae-Young;Lee, Jae-Mok;Ryoo, Hyun-Mo;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.86-90
    • /
    • 2009
  • Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction

  • Nguyen, Mai Thi;Lee, Wan
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.104-109
    • /
    • 2022
  • Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3'UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.

Fam83h 발현 억제에 의한 조법랑세포 Amelogenin 발현 변화 (THE EFFECT OF Fam83h KNOCKDOWN ON THE AMELOGENIN GENE EXPRESSION IN THE AMELOBLAST CELL LINE)

  • 이숙경;이경은;김정욱
    • 대한소아치과학회지
    • /
    • 제37권4호
    • /
    • pp.467-471
    • /
    • 2010
  • 치과유전질환의 하나인 법랑질 형성부전증은 유전적인 원인이 복잡할 뿐만 아니라 임상적인 양상 또한 다양하다. 법랑질 형성부전증은 임상적 양상에 따라서 크게 저형성형, 저성숙형, 저석회화형의 3 종류로 분류된다. 최근 상염색체 우성 저석회화 법랑질 형성부전증의 원인 유전자로 밝혀진 Fam83h의 기능에 관하여 알려진 바가 없어, Fam83h의 발현억제가 조법랑 세포의 아멜로제닌 발현에 미치는 영향을 불멸화된 조법랑세포주를 이용하여 분석한 결과, Fam83h의 발현이 억제되더라도 아멜로제닌의 발현에 영향을 주지 않는 것으로 확인되었으며, 향후 추가적인 연구를 통한 전체 유전자의 발현양상 변화 등을 통한 유전자 기능의 연구가 필요하리라 생각된다.

간암치료신약개발 및 이의 제제화 연구 (Replication of Hepatitis B Virus is repressed by tumor suppressor p53)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

TI-I-174, a Synthetic Chalcone Derivative, Suppresses Nitric Oxide Production in Murine Macrophages via Heme Oxygenase-1 Induction and Inhibition of AP-1

  • Kim, Mi Jin;Kadayat, Taraman;Kim, Da Eun;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제22권5호
    • /
    • pp.390-399
    • /
    • 2014
  • Chalcones (1,3-diaryl-2-propen-1-ones), a flavonoid subfamily, are widely known for their anti-inflammatory properties. Propenone moiety in chalcones is known to play an important role in generating biological responses by chalcones. In the present study, we synthesized chalcone derivatives structurally modified in propenone moiety and examined inhibitory effect on nitric oxide (NO) production and its potential mechanisms. Among the chalcone derivatives used for this study, TI-I-174 (3-(2-Hydroxyphenyl)-1-(thiophen-3-yl)prop-2-en-1-one) most potently inhibited lipopolysaccharide (LPS)-stimulated nitrite production in RAW 264.7 macrophages. TI-I-174 treatment also markedly inhibited inducible nitric oxide synthase (iNOS) expression. However, TI-I-174 did not significantly affect production of IL-6, cyclooxygenase-2 (COX-2) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), implying that TI-I-174 inhibits production of inflammatory mediators in a selective manner. Treatment of macrophages with TI-I-174 significantly inhibited transcriptional activity of activator protein-1 (AP-1) as determined by luciferase reporter gene assay, whereas nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity was not affected by TI-I-1744. In addition, TI-I-174 significantly inhibited activation of c-Jun-N-Terminal kinase (JNK) without affecting ERK1/2 and p38MAPK, indicating that down-regulation of iNOS gene expression by TI-I-174 is mainly attributed by blockade of JNK/AP-1 activation. We also demonstrated that TI-I-174 treatment led to an increase in heme oxygenase-1 (HO-1) expression both at mRNA and protein level. Transfection of siRNA targeting HO-1 reversed TI-I-174-mediated inhibition of nitrite production. Taken together, these results indicate that TI-I-174 suppresses NO production in LPS-stimulated RAW 264.7 macrophages via induction of HO-1 and blockade of AP-1 activation.

Expression and Function of GSTA1 in Lung Cancer Cells

  • Pan, Xue-Diao;Yang, Zhou-Ping;Tang, Qi-Ling;Peng, Tong;Zhang, Zheng-Bing;Zhou, Si-Gui;Wang, Gui-Xiang;He, Bing;Zang, Lin-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8631-8635
    • /
    • 2014
  • Glutathione S-transferase A1 (GSTA1) appears to be primarily involved in detoxification processes, but possible roles in lung cancer remain unclear. The objective of this study was to investigate the expression and function of GSTA1 in lung cancer cells. Real-time PCR and Western blotting were performed to assess expression in cancer cell lines and the normal lung cells, then verify the A549 cells line with stable overexpression. Localization of GSTA1 proteins was assessed by cytoimmunofluorescence. Three double-strand DNA oligoRNAs (SiRNAs) were synthesized prior to being transfected into A549 cells with Lipofectamine 2000, and then the most efficient SiRNA was selected. Expression of the GSTA1 gene in the transfected cells was determined by real-time PCR and Western blotting. The viability of the transfected cells were assessed by MTT. Results showed that the mRNA and protein expression of A549 cancer cells was higher than in MRC-5 normal cells. Cytoimmunofluorescence demonstrated GSTA1 localization in the cell cytoplasm and/or membranes. Transfection into A549 cells demonstrated that down-regulated expression could inhibit cell viability. Our data indicated that GSTA1 expression may be a target molecule in early diagnosis and treatment of lung cancer.

PU.1 Is Identified as a Novel Metastasis Suppressor in Hepatocellular Carcinoma Regulating the miR-615-5p/IGF2 Axis

  • Song, Li-Jie;Zhang, Wei-Jie;Chang, Zhi-Wei;Pan, Yan-Feng;Zong, Hong;Fan, Qing-Xia;Wang, Liu-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3667-3671
    • /
    • 2015
  • Invasion and metastasis is the major cause of tumor recurrence, difficulty for cure and low survival rate. Excavating key transcription factors, which can regulate tumor invasion and metastasis, are crucial to the development of therapeutic strategies for cancers. PU.1 is a master hematopoietic transcription factor and a vital regulator in life. Here, we report that, compared to adjacent non-cancerous tissues, expression of PU.1 mRNA in metastatic hepatocellular carcinoma (HCC), but not primary HCC, was significantly down-regulated. In addition, levels of PU.1 mRNA in metastatic hepatoma cell lines MHCC97L and MHCC97H were much lower than in non-metastatic Hep3B cells. Transwell invasion assays after PU.1 siRNA transfection showed that the invasion of hepatoma cell lines was increased markedly by PU.1 knockdown. Oppositely, overexpression of PU.1 suppressed the invasion of these cells. However, knockdown and overexpression of PU.1 did not influence proliferation. Finally, we tried to explore the potential mechanism of PU.1 suppressing hepatoma cell invasion. ChIP-qPCR analysis showed that PU.1 exhibited a high binding capacity with miR-615-5p promoter sequence. Overexpression of PU.1 caused a dramatic increase of pri-, pre- and mature miR-615-5p, as well as a marked decrease of miR-615-5p target gene IGF2. These data indicate that PU.1 inhibits invasion of human HCC through promoting miR-615-5p and suppressing IGF2. These findings improve our understanding of PU.1 regulatory roles and provided a potential target for metastatic HCC diagnosis and therapy.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Activation of Estrogen Receptor by Bavachin from Psoralea corylifolia

  • Park, Joon-Woo;Kim, Do-Hee;Ahn, Hye-Na;Song, Yun-Seon;Lee, Young-Joo;Ryu, Jae-Ha
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.183-188
    • /
    • 2012
  • In this study, we examined the estrogenic activity of bavachin, a component of Psoralea corylifolia that has been used as a traditional medicine in Asia. Bavachin was purified from ethanolic extract of Psoralea corylifolia and characterized its estrogenic activity by ligand binding, reporter gene activation, and endogenous estrogen receptor (ER) target gene regulation. Bavachin showed ER ligand binding activity in competitive displacement of [$^3H$] $E_2$ from recombinant ER. The estrogenic activity of bavachin was characterized in a transient transfection system using $ER{\alpha}$ or $ER{\beta}$ and estrogen-responsive luciferase plasmids in CV-1 cells with an $EC_{50}$ of 320 nM and 680 nM, respectively. Bavachin increased the mRNA levels of estrogen-responsive genes such as pS2 and PR, and decreased the protein level of $ER{\alpha}$ by proteasomal pathway. However, bavachin failed to activate the androgen receptor in CV-1 cells transiently transfected with the corresponding receptor and hormone responsive reporter plasmid. These data indicate that bavachin acts as a weak phytoestrogen by binding and activating the ER.