• Title/Summary/Keyword: mRNA levels

Search Result 2,603, Processing Time 0.032 seconds

Comparison of Interleukin-8 Levels in Long-Distance Runners and Healthy Sedentary Non-Athletic Control Subjects

  • Shin, Young-Oh;Bae, Jun-Sang;Min, Ji-Won;Lee, Jeong-Beom;Kim, Jung-Kyu;Song, Young-Ju;Yang, Hun-Mo;Min, Young-Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.263-267
    • /
    • 2007
  • We have previously demonstrated that the level of leukocytes and neutrophils significantly increased immediately and 30 min after exercise. Interleukin-8 (IL-8) is an inflammatory cytokine that acts as a chemokine on neutrophils. In the present study, we evaluated the correlation between the number of neutrophils and leukocytes, and between the number of neutrophils and plasma IL-8 level. Long-distance trained runners (TRs, n = 10) and untrained sedentary control subjects (SEDs, n = 10) ran for one hour at 70% of heart rate reserve. In the TR, the number of neutrophils correlated significantly with the number of leukocytes in the blood. However, there was no correlation between the number of neutrophils and the plasma IL-8 concentration in both groups. Expressions of IL-8 protein and mRNA were markedly higher in the TRs as compared to the SEDs at three time intervals (pre-exercise, immediately after exercise, and post exercise). In conclusion, our results show that 1) the neutrophil level was dependent on the level of leukocytes 2) there was no correlation between the neutrophils count and plasma IL-8 concentration and 3) a higher plasma IL-8 level in athletes may be a unique characteristic of intensive training.

Sochungyong-tang, Tradititional Korean Medicine, Suppresses Th2 Lineage Development (소청룡탕(小靑龍湯)이 분화된 Th1 cell 및 Th2 cell cytokine profile에 미치는 영향)

  • Jeong, Hyuk-Joon;Hong, Moo-Chang;Shin, Min-Kyu;Bae, Hyun-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.380-388
    • /
    • 2005
  • In this study, the immunological effect of a traditional Korea herbal medicine, Sochungyong-tang (SCRT) that has been widely used for the treatment of various immunological disorders including allergic asthma in Korea, was examined in vitro. In our previous study demonstrated that SCRT decreases the expression of IL-4 mRNA, that plays pivotal role in Th2 cell development, while increases $IFN-{\gamma}{\tilde{a}}expression$, which is one of the key cytokines for Th1 lineage development in Th0 condition. That study strongly implies that SCRT can correct Th2 dominant condition directly affecting to the CD4+ T cell development. Present study designated to further evaluate the SCRT on helper T cell development by monitoring Th1/Th2 specific cytokine secretion patterns in artificially induced Th1 or Th2 polarized condition. The results demonstrated that Th2 cells were dramatically under-populated in Th2 driven condition with SCRT treatment, while Th1 cells were not altered in Th1 skewed condition. Furthermore, under Th2-skewed conditions the levels of and IL-4 were considerably decreased with SCRT treatment. However, the expression of GATA-3, a transcription factor that plays pivotal role in Th2 lineage programming, was not changed with SCRT, suggesting that the suppression of Th2 cell development by SCRT was not mediated by GATA-3. Present study implies that the effect on CD4+ T cell may be the one of key pharmacological effect point for treating IgE medicated allergic asthma by SCRT. These results also suggest that SCRT might be desirable agent for the correction of Th2 dominant pathological disorders.

Effects of Antioxidant and Anti-inflammatory Activity of Allii Macrostemonis Bulbus Cheonghyeol Plus on the Inhibition of Atherosclerosis (해백청혈플러스(AMCP)의 항산화 및 항염증 작용을 통한 죽상동맥경화 억제 효과)

  • Chae, Incheol;Ryu, Juyeong;Yoo, Horyong;Kim, Yoonsik;Seol, Inchan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.3
    • /
    • pp.126-135
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant, anti-inflammatory and anti-cellular adhesion molecules effects of Allii Macrostemonis Bulbus, Artemisiae Capillaris Herba, Curcumae Radix, Crataegi Fructus, Salviae Militiorrhizae Radix complex extract(AMCP) on the inhibition of atherosclerosis in HUVEC. We measured DPPH radical scavenging activity and ABTS radical scavenging activity of AMCP to evaluate its antioxidant effect. And we also measured the expression level of NF-κB, IκBα, ERK, JNK, p38 proteins to evaluate its anti-inflammatory effect. Lastly, we measured the expression level of MCP-1, ICAM-1, VCAM-1 mRNA and their level to evaluate its anti-celluar adhesion molecules. AMCP did not show any cytotoxicity in HUVEC within the concentraion tested except for a concentration of 400 ㎍/㎖. AMCP increased the DPPH radical scavenging activitiy and ABTS radical scavenging activity in HUVEC as the concentration of AMCP rises. AMCP significantly reduced NF-κB, IκBα, JNK, ERK and p38 protein expression in HUVEC compared to control group. AMCP significantly reduced MCP-1, ICAM-1, VCAM-1 gene expresion in HUVEC compared to control group. AMCP significantly decreased the levels of MCP-1, ICAM-1, VCAM-1 in HUVEC compared to control group. These results suggest that AMCP has effects on antioxidation, anti-inflammation and anti-cellular adhesion molecule, which helps the treatment and prevention of dyslipidemia and atherosclerosis.

Metabolic Interactions of Cannabinoids with Steroid Hormones

  • Watanabe, Kazuhito
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.57-64
    • /
    • 2007
  • Metabolic interactions of the three major cannabinoids, ${\Delta}^9$-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) with steroid hormones were investigated. These cannabioids concentration-dependently inhibited $3{\beta}$-hydroxysteroid dehydrogenase and $17{\alpha}$-hydroxylase in rat adrenal and testis microsomes. CBD and CBN were the most potent inhibitors of $3{\beta}$-phydroxysteroid dehydrogenase and progesterone $17{\alpha}$-hydroxylase, respectively, in rat testis microsomes. Three cannabinoids highly attenuated hCG-stimulated testosterone production in rat testicular interstitial cells. These cannabinoids also decreased in levels of mRNA and protein of StAR in the rat testis cells. These results indicate that the cannabinoids could interact with steroid hormones, and exert their modulatory effects on endocrine and testicular functions. Metabolic interaction of a THC metabolite, $7{\beta}$-hydroxy-${\Delta}^8$-THC with steroids is also investigated. Monkey liver microsomes catalyzed the stereoselective oxidation of $7{\beta}$-hydroxy-${\Delta}^8$-THC to 7-oxo-${\Delta}^8$-THC, so-called microsomal alcohol oxygenase (MALCO). The reaction is catalyzed by CYP3A8 in the monkey liver microsomes, and required NADH as well as NADPH as an efficient cofactor, and its activity is stimulated by some steroids such as testosterone and progesterone. Kinetic analyses revealed that MALCO-catalyze reaction showed positive cooperativity. In order to explain the metabolic interaction between the cannabinoid metabolite and testosterone, we propose a novel kinetic model involving at least three binding sites for mechanism of the metabolic interactions.

  • PDF

Protective effect of lectin from Synadenium carinatum on Leishmania amazonensis infection in BALB/c mice

  • Afonso-Cardoso, Sandra R.;Rodrigues, Flavio H.;Gomes, Marcio A.B.;Silva, Adriano G.;Rocha, Ademir;Guimaraes, Aparecida H.B.;Candeloro, Ignes;Favoreto, Silvio;Ferreira, Marcelo S.;Souza, Maria A. de
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.4
    • /
    • pp.255-266
    • /
    • 2007
  • The protective effect of the Synadenium carinatum latex lectin (ScLL), and the possibility of using it as an adjuvant in murine model of vaccination against American cutaneous leishmaniasis, were evaluated. BALB/c mice were immunized with the lectin ScLL (10, 50, 100$[\mu}g$/animal) separately or in association with the soluble Leishmania amazonensis antigen (SLA). After a challenge infection with $10^6$ promastigotes, the injury progression was monitored weekly by measuring the footpad swelling for 10 weeks. ScLL appeared to be capable of conferring partial protection to the animals, being most evident when ScLL was used in concentrations of 50 and 100${\mu}g$/animal. Also the parasite load in the interior of macrophages showed significant reduction (61.7%) when compared to the control group. With regard to the cellular response, ScLL 50 and 100 ${\mu}g$/animal stimulated the delayed-type hypersensitivity (DTH) reaction significantly (P < 0.05) higher than SLA or SLA plus ScLL 10 weeks after the challenge infection. The detection of high levels of IgG2a and the expression of mRNA cytokines, such as IFN-$\gamma$, IL-12, and TNF-$\alpha$ (Th1 profiles), corroborated the protective role of this lectin against cutaneous leishmaniasis. This is the first report of the ScLL effect on leishmaniasis and shows a promising role for ScLL to be explored in other experimental models for treatment of leishmaniasis.

Effects of Dioxin Exposed in Human by Using Radioactive cDNA Microarray

  • Ryu, Yeon-Mi;Kim, Ki-Nam;Kim, Hye-Won;Sohn, Sung-Hwa;Lee, Seung-Ho;Kim, Yu-Ri;Seo, Sang-Hui;Lee, Seung-Min;Lee, Eun-Il;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 2006
  • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) are well known as the most toxic environmental compound in these days. Many researches are reported that dioxin produces multiple toxic effects, such as endocrine toxicity, reproductive toxicity, immunotoxicity and cancer. In this study, we carried to discover novel evidence for previously unknown gene expression patterns in human exposed to dioxin by using radioactive cDNA microarray. 548 workers who were divided into experimental and control groups according to their urinary Naphthol levels were enrolled in our study. Blood mRNA in human was isolated, and the gene expression profiles were analyzed by cDNA microarray. Gene expression analysis identified 52 genes which exhibited a significant change. In our study, most notably, genes involved in cell cycle, cell proliferation, signal transduction and apoptosis in human exposed to dioxin, such as CCND3, TSHR, and EFRN5, were up-regulated. In the current study, we observed gene expression of people that are exposed to dioxin using radioactive cDNA microarray. Through these results, we suggest when objects are exposed to toxic compounds, such as dioxin, the radioactive cDNA microarray may be using in sensitively detecting of cancerous change.

Chilling Tolerance of Photosynthesis in Plants is Dependent on the Capacity to Enhance the Levels of the Xanthophyll Cycle Pigments in Response to Cold Stress

  • Kim, Hyun-Ju;Kang, In-Soon;Lee, Chin-Bum;Lee, Choon-Hwan;Cho, Sung-Ho;Moon, Byoung-Yong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Plants possess the ability to dissipate the excitation energy for the protection of photosynthetic apparatus from absorbed excess light. Heat dissipation is regulated by xanthophyll cycle in thylakoid membranes of chloroplasts. We investigated the mechanistic aspects of xanthophyll cycle-dependent photoprotection against low-temperature photoinhibition in plants. Using barley and rice as chilling-resistant species and sensitive ones, respectively, chilling-induced chlorophyll fluorescence quenching, composition of xanthophyll cycle pigments and mRNA expression of the zeaxanthin epoxidase were examined. Chilled barley plants exhibited little changes in chlorophyll fluorescence quenching either of photochemical or non-photochemical nature and in the photosynthetic electron transport, indicating low reduction state of PS II primary electron acceptor. In contrast to the barley, chilled rice showed a marked decline in those parameters mentioned above, indicating the increased reduction state of PS II primary electron acceptor. In addition, barley plants were shown to have a higher capacity to elevate the pool size of xanthophyll cycle pigments in response to cold stress compared to rice plants. Such species-dependent regulation of xanthophyll cycle activity was correlated with the gene expression level of cold-induced zeaxanthin epoxidase. Chilled rice plants depressed the gene expression of zeaxanthin epoxidase, whereas barley increased its expression in response to cold stress. We suggest that chilling-induced alterations in the pool size of xanthophyll cycle pigments related to its capacity would play an important role in regulating plant's sensitivity to chilling stress.

  • PDF

Methanol Extracts of Stewartia koreana Inhibit Cyclooxygenase-2 (COX-2) and Inducible Nitric Oxide Synthase (iNOS) Gene Expression by Blocking NF-κB Transactivation in LPS-activated RAW 264.7 Cells

  • Lee, Tae Hoon;Kwak, Han Bok;Kim, Hong-Hee;Lee, Zang Hee;Chung, Dae Kyun;Baek, Nam-In;Kim, Jiyoung
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.398-404
    • /
    • 2007
  • Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are involved in various pathophysiological processes such as inflammation and carcinogenesis. In a search for inhibitors of COX-2 and iNOS production we found that extracts of Stewartia koreana strongly inhibited NO and $PGE_2$ production in LPS-treated macrophage RAW 264.7 cells. We have now shown that the mRNA and protein levels of iNOS and COX-2 are reduced by the Stewartia koreana extract (SKE). SKE inhibited expression of an NF-${\kappa}B$ reporter gene in response to LPS, and gel mobility shift assays revealed that SKE reduced NF-${\kappa}B$ DNA-binding activity. The extract also inhibited LPS-induced phosphorylation of $I{\kappa}B-{\alpha}$ and nuclear translocation of p65. Administration of the extract reduced the symptoms of arthritis in a collagen-induced arthritic mouse model. These results indicate that Stewartia extracts contain potentially useful agents for preventing and treating inflammatory diseases.

Ectopic Expression of a Cold-Responsive OsAsr1 cDNA Gives Enhanced Cold Tolerance in Transgenic Rice Plants

  • Kim, Soo-Jin;Lee, Sang-Choon;Hong, Soon Kwan;An, Kyungsook;An, Gynheung;Kim, Seong-Ryong
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.449-458
    • /
    • 2009
  • The OsAsr1 cDNA clone was isolated from a cDNA library prepared from developing seed coats of rice (Oryza sativa L.). Low-temperature stress increased mRNA levels of OsAsr1 in both vegetative and reproductive organs. In situ analysis showed that OsAsr1 transcript was preferentially accumulated in the leaf mesophyll tissues and parenchyma cells of the palea and lemma. For transgenic rice plants that over-expressed full-length OsAsr1 cDNA in the sense orientation, the Fv/Fm values for photosynthetic efficiency were about 2-fold higher than those of wild type-segregating plants after a 24-h cold treatment. Seedlings exposed to prolonged low temperatures were more tolerant of cold stress, as demonstrated during wilting and regrowth tests. Interestingly, OsAsr1 was highly expressed in transgenic rice plants expressing the C-repeat/dehyhdration responsive element binding factor 1 (CBF1), suggesting the regulation of OsAsr1 by CBF1. Taken together, we suggest that OsAsr1 gene play an important role during temperature stress, and that this gene can be used for generating plants with enhanced cold tolerance.

MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions

  • Park, Sang Mee;Park, Hae Ryoun;Lee, Ji Hye
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.