• Title/Summary/Keyword: mRNA activation

Search Result 834, Processing Time 0.034 seconds

The effects of Allomyrina dichotoma larval extract on palmitate-induced insulin resistance in skeletal muscle cells (장수풍뎅이 유충 추출물이 고지방산 처리 골격근세포의 인슐린 저항성에 미치는 영향)

  • Kim, Kyong;Sim, Mi-Seong;Kwak, Min-Kyu;Jang, Se-Eun;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.462-475
    • /
    • 2022
  • Purpose: Allomyrina dichotoma larvae are one of the approved edible insects with nutritional value and various functional and medicinal properties. Previously we have demonstrated that the Allomyrina dichotoma larval extract (ADLE) ameliorates hepatic insulin resistance in high-fat diet (HFD)-induced diabetic mice through the activation of adenosine monophosphate-activated protein kinase (AMPK). This study investigated the effects of ADLE on insulin resistance in the skeletal muscle and explored mechanisms for enhancing the glucose uptake in palmitate (PAL)-treated C2C12 myotubes. Methods: To induce insulin resistance, the differentiated C2C12 myotubes were treated with PAL (0.5 mM) for 24 hours, and then treated with a 0.5 mg/ml concentration of ADLE, and the resultant effects were measured. The expression levels of glucose transporter-4 (GLUT4), AMPK, and the mitochondrial metabolism-related proteins were analyzed by western blotting. The mRNA expression levels of lipogenesis- related genes were determined by quantitative reverse-transcriptase PCR. Results: The exposure of C2C12 myotubes to 0.5 mg/ml of ADLE increased cell viability significantly compared to PAL-treated cells. ADLE upregulated the protein expression of GLUT4 and enhanced glucose uptake in the PAL-treated cells. ADLE increased the phosphorylated AMPK in both the PAL-treated C2C12 myotubes and HFD-treated skeletal muscle. The reduced expression levels of peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC1α) and uncoupling protein 3 (UCP3) due to the PAL and HFD treatment were reversed by the ADLE treatment. The citrate synthase activity was also significantly increased with the PAL and ADLE co-treatment. Moreover, the mRNA and protein expressions of fatty acid synthesis-related factors were reduced in the PAL and HFD-treated muscle cells, and this effect was significantly attenuated by the ADLE treatment. Conclusion: ADLE activates AMPK, which in turn induces mitochondrial metabolism and reduces fatty acid synthesis in C2C12 myotubes. Therefore, ADLE could be useful for preventing or treating insulin resistance of skeletal muscles in diabetes.

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

Inhibition Effect of Taxilli Ramulus Extract on Osteoclast Differentiation and Bone Resorption (상기생 추출물이 파골세포 분화와 골흡수 억제에 미치는 효과)

  • Baek, Jong Min;Kim, Ju Young;Lee, Myeung Su;Jeung, Woo Jin;Moon, Seo Young;Jeon, Byung Hoon;Oh, Jae Min;Choi, Min Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.431-436
    • /
    • 2013
  • Bone homeostasis is maintained by co-ordination of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between osteoclasts and osteoblasts leads to many bone diseases such as osteoporosis, rheumatoid arthritis. Taxillus chinensis is a herb that has been widely used to improve bone health. However, the effect and mechanism of Taxillus chinensis extract on osteoclast differentiation and bone resportion has been unknown. Thus, We investigated the effect of Taxillus chinensis on expression of receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation and bone resorption. Also, the action of Taxillus chinensis on mechanisms relating to osteoclast differentiation was studied. In this results, we identified that Taxillus chinensis significantly inhibited RANKL-induced osteoclast differentiation and bone resportion. Moreover, Taxillus chinensis was suppressed the activation of NF-${\kappa}B$ in bone marrow macrophage treated RANKL and M-CSF. Taxillus chinensis was down-regulated the mRNA expression of c-Fos, nuclear factor of activated T-cells (NFAT)c1, osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP). The cell adhesion-related molecules such as integrin ${\alpha}v$ and integrin ${\beta}3$, and the filamentous actin (F-actin) rings of mature osteoclasts-related molecules such as dendritic cell-specific transmembrane preotein (DC-STAMP) and cathepsin K are also suppressed. Taken together, these results indicated that Taxillus chinensis will be a good candidate to treat osteoclast-mediated bone diseases.

Effects of Controlled Photoperiod on Body Development in Growing Juvenile Rats

  • Lee, Seung-Hoon;Lee, Han-Ki;Shin, Jin-Hee;Hong, Yun-Kyung;Lee, Sang-Kil;Lee, Sang-Un;Suzuki, Takao;Kang, Tae-Young;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.2
    • /
    • pp.89-94
    • /
    • 2010
  • Melatonin is induced by light information through the retina and leads to growth factor activation. Thus, we investigated the effects of melatonin by controlling the photoperiod of growing young rats. Male Sprague-Dawley rats (n=6; 4 weeks old) were divided into two experimental groups: the L/D group (normal photoperiod; light/dark: 12/12 h; lights on at 9:00 a.m.) and the L/L group (light/light: 24 h). Rat body weight and food consumption were measured daily for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of ketamine (50 mg/kg) and xylazine (10 mg/kg) and sacrificed. Tissue was then collected for RNA isolation (from brain, heart, liver, kidney, adrenal gland, testis, tibia, hind limb muscles). Also, serum was isolated from blood using a centrifugal separation. The L/L group had significantly lower body weight than the L/D group from 4 to 6 weeks (p<0.05). The L/D group had increased tissue mass, compared with the L/L group, but the difference was not statistically significant. The L/D group had a significantly higher melatonin concentration than the L/L group between the hours of midnight and 2:00 a.m (p<0.01). These results indicate that photoperiod length may affect the secretion of melatonin from the pineal gland. Also, the reduction of nocturnal melatonin secretion may retard the development of growing young rats. In future studies, we plan to compare exogenous melatonin administration with endogenous melatonin concentration induced by photoperiod control. Moreover, we will confirm whether the effects seen in pathological animal models can be reversed by controlling the photoperiod.

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

Analysis of Bovine Interferon-tau Gene subtypes Expression in the Trophoblast and Non-trophoblast cells

  • Kim, Min-Su;Lim, Hyun-Joo;Lee, Ji Hwan;Park, Soo Bong;Won, Jeong-Il;Kim, Hyun Jong
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.195-203
    • /
    • 2018
  • Interferon-tau (IFNT) is known as a major conceptus protein that signals the process of maternal recognition of pregnancy in ruminants. Also, multiple interferon genes exist in cattle, However, molecular mechanisms of these bovine IFNT (bIFNT) genes whose expressions are limited have not been characterized. We and others have observed that expression levels of bovine subtype IFNT genes in the tissues of ruminants; thus, bIFNT1 and other new type I (bIFNTc1/c2/c3) gene co-exist during the early stages of conceptus development and non-trophoblast cells. Its genes transcription could be regulated through CDX2 and ETS2 and JUN and/or cAMP-response element binding protein (CREB)-binding protein (CREBBP) expression, a transcription factor implicated in the control of cell differentiation in the trophectoderm. Bovine ear-derived fibroblast cells, were co-transfected with luciferase reporter constructs carrying upstream (positions -1000 to +51) regions of bIFNT1 and other new type I gene and various transcription factor expression plasmids. Compared to each - 1kb-bIFNT1/c1/c2/c3-Luc increased when this constructs were co-transfected with CDX2, ETS2, JUN and/or CREBBP. Also, Its genes was had very effect on activity by CDX2, either alone or with the other transcription factors, markedly increased luciferase activity. However, the degree of transcriptional activation of the bIFNTc1 gene was not similar to that bIFNT1/c2/c3 gene by expression plasmid. Furthermore, Sequence analyses also revealed that the expression levels of bIFNT1/c2/c3 gene mRNAs expression were highest on day 17, 20 and 22 trophoblast and, Madin-Darby bovine kidney (MDBK), Bovine ear-derived fibroblast (EF), and endometrium (Endo) non-trophoblast cells. But, bIFNTc1 mRNA had not same expression level, bIFNTc1 lowest levels than those of IFNT1/c2/c3 gene in both trophoblast and non-trophoblast cells. These results demonstrate that bovine subtype bIFNT genes display differential, in the trophoblast and non-trophoblast cells.

The Role of c-Jun N-terminal Kinase in the Radiation-Induced Lung Fibrosis (방사선에 의한 폐 섬유화증에서 c-Jun N-terminal Kinase(JNK)의 역할)

  • Uh, Soo-Taek;Hong, Ki-Young;Lee, Young-Mok;Kim, Ki-Up;Kim, Do-Jin;Moon, Seung-Hyuk;Kim, Yong-Hoon;Park, Choon-Sik;Yeom, Uk;Kim, Eun-Suk;Choi, Doo-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.4
    • /
    • pp.450-461
    • /
    • 2001
  • Background : The underlying pathogenesis of radiation-induced lung fibrosis (RTLF) has not been very well defined. However, the role of TGF-$\beta$ in the generation of RTLF has been a major focus because there is an increase in the expression of both the TGF-${\beta}m$-RNA and its protein preceding RTLF lesions. The down stream signal after a TGF-$\beta$ stimulated lung fibrosis includes the activation of many mediators such as Smad and c-Jun N-terminal kinase (JNK) through TAK1. It is we hypothesized that JNK activation may play a pivotal role in RTLF pathogenesis through increased transcription of the fibrogenic cytokines. The present study evaluates JNK activity in alveolar macrophages after irradiation and the relationship between JNK activity and the amount of collagen in the lung tissues. Methods : C57BL/6 mice(20-25 gr, males) received chlorotetracycline(2g/L) in their drinking water 1 week prior to irradiation and continuously there after. The mice were irradiated once with 1400 cGy of $60CO{\gamma}$-ray over the whole chest. The cellular composition of the whole lung bronchoalveoalr lavage fluids(BALF), elastin expression in the lung tissues, the level of hydroxyproline in lung tissues, and an in vitro JNK assay was measured before irradiation and one, four, and eight weeks after irradiation (RT). Results : The volumes of BALF retrieved from instilled 4 mL of saline with 2% heparin were 3.7-3.8 mL for each group. The cell numbers were similar before($4.1{\times}10^4{\pm}0.5{\times}10^4/mL$) and 1 week($3.1{\times}10^4{\pm}0.5{\times}10^4/mL$) after RT. At four and eight weeks after RT, the cell number reached to $14.0{\times}10^4{\pm}1.5{\times}10^4mL$ and $10.0{\times}10^4{\pm}1.3{\times}10^4/mL$, respectively. There we no changes in the lymphocytes and neutrophils population observed in the BALF after RT. The H-E stain of the lung tissues did not show any structural and fibrotic change in the lung tissues at 4 and 8 weeks after RT. In addition, the amount of elastin and collagen were not different on Verhoeff staining of the lung tissues before RT to eight weeks after RT. The hydroxyproine content was measured with the left lung dissected from the left main bronchus. The lung were homogenized and hydrolyzed with 6 N Hel for 12 hours at $110^{\circ}C$ then measured as previously described. The content of hydroxyproline, standardized with a lung protein concentration, reached a peak 4 weeks after RT, and thereafter showed a plateau. AnIn vitro JNK assay using c-$Jun_{1-79}$-GST sepharose beads were performed with the alveolar macrophages obtained from the BAL. JNK activity was not detected prior to RT, However, the JNK activity increased from one week after RT and reached a peak four weeks after RT. Conclusion : JNK may be involved in the pathogenesis because the JNK activity showed similar pattern observed with the hydroxyproine content. However, it is necessary to clarify that the JNK increases the transcription of fibrogenic cyiokines through the transcription factor.

  • PDF

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages (고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석)

  • Yang, Chul-Su;Ko, Sung-Ryong;Cho, Byung-Goo;Lee, Ji-Yeon;Kim, Ki-Hye;Shin, Dong-Min;Yuk, Jae-Min;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells (복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가)

  • Yoon, Hyun-Joong;Park, Soo-Young;Oh, Sung-Tack;Lee, Kee-Young;Yang, Sung-Yeul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.44-55
    • /
    • 2011
  • This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.